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CONVEX ANALYSIS -TECHNIQUES FOR HOPF-LAX
FORMULAE IN HAMILTON-JACOBI EQUATIONS

CYRIL IMBERT

ABSTRACT. The purpose of the present paper is to prove, solely using Convex
(and Nonsmooth) analysis techniques, that Hopf-Lax formulae provide explicit
solutions for Hamilton-Jacobi equations with merely lower semicontinuous initial
data. The substance of these results appears in [1] but the proofs are funda-
mentally different (we do not use the comparison principle) and a distinct notion
of discontinuous solutions is used. Moreover we give a maximum principle for
the Lax function. This approach permits us to fully understand the role of the
convexity of the data.

INTRODUCTION

The Lax and the Hopf functions are explicit solutions of:

: %+ H(Du)=0 inR" x (0;+00),
(1) u(.,0) = g()) in R”,

(where Du stands for the derivative of u with respect to the space variable ) when
either H or g is convex. We recall their definition:

(2) uLax(2,t) = f sup {g(z —y) + (y,q) —tH(q)},
YER™ geRn
(3) UHopt (2, 1) = oD i {9z —y) + (y,q) — tH(q)}.

These functions have been intensively studied (see for instance [15, 3, 16, 4]) and
the latest contribution is [1]. It is proved that for merely lower semicontinuous (Isc
for short) and possibly infinite initial data ¢, the Lax function is a Isc solution of
(1) (in the sense of [5]) when the hamiltonian H is convex. It is also proved that
the Hopf function is the minimal supersolution of (1) when the initial condition g
is convex. In [1], the proofs rely on the famous comparison principle of viscosity
sub and supersolutions and on regularization procedures. The aim of the present
paper is to use tools from Convex analysis to prove these results, without relying
on PDE techniques. Moreover, we show that the Lax function verifies a “maximum
principle”, that is to say it is the maximal lsc (sub)solution of the Cauchy problem.
Note that the definition of lsc solutions we use in this paper is slightly different
from [5]. It first appeared in [20]. See also [12] for further results concerning these
discontinuous solutions.
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1. PRELIMINARIES

This section is devoted to definitions and results that are used in the present
paper.

Discontinuous functions are considered throughout. A solution u of (1) is merely
lower semicontinuous (Isc) and it can take the value +oo. It is said to be extended
real-valued. We refer to the set

{(z,t) e R" xR : u(x,t) < +o0}

as the domain of u and we denote it dom w. If dom w is nonempty, u is said to
be proper. For such nonsmooth functions, various concepts of subdifferentials were
introduced to replace the classical notion of Fréchet derivative. One of them is the
Fréchet subdifferential; it is defined at any point (x,t) of the domain of u by:

Oru(z,t) = {((,a) ER" x R,a(s — t) + (C,y — x)
< U’(y: 5) - u(m,t) + O(Iy - J" + ‘t - SD}:
o{z)

T2 — O asax — 0.

where o(.) is a function such that

1.1. Lsc solutions. Since Crandall and Lions introduced the concept of continuous
viscosity solutions of Hamilton-Jacobi equations, these generalized solutions have
been intensively studied [9]. For the reader convenience, we recall the definition of
a continuous viscosity solution of (1).

Definition 1. Let u: R™ x [0;+00) — R be a continuous function.
o It is a (viscosity) supersolution of (1) if for all (z,t) € R™ x (0, +o0) and
for all (¢, o) € dpu(x,t),

a+ H(C) =2 0 and u(z,0) > g(z).

e [t is a (viscosity) subsolution of (1) if for all (x,t) € R™ x (0, +00) and for
all (C,a) € —p(—u)(z,¢),

a+ H(C) <0 and u(z,0) < g(z).

e [t is a continuous viscosity solution of (1) if it is a super and a subsolution
of (1).

In 1990, Barron and Jensen [6] introduced (real-valued) lsc solutions for Hamilton-
Jacobi equations of evolution type which hamiltonians H (t, z, u, p) are convex in p.
It has been shown that for such hamiltonians, a continuous solution of a Hamilton-
Jacobi equation can be completely characterized by its subgradients which should
satisfy the relation

a+ H(t,z,u,() =0V(¢,a) € dpu(z, t) V(z,t).

It has remarkable resemblance with a classical smooth solution concept of Hamilton-
Jacobi equations. In [5], Barron extended this definition by authorizing lsc solutions
u to be extended real-valued. In [6, 5], the initial condition is not achieved pointwise
but in the following way:

g(z) = liminf wu(y,s) for all z € R™.

y—x,5—0+
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Analogous results have been obtained by Frankowska [10] for particular hamil-
tonians. She also provided an equivalent definition of such solutions in terms of
directional derivatives and suggested a pointwise interpretation of the initial condi-
tion coupled with a one-sided infinitesimal condition on u at ¢t = 0.

Soravia [20] introduced a concept of discontinuous viscosity solutions to Dirichlet
problems for Hamilton-Jacobi equations with convex hamiltonians. The definition
of Isc solutions for Cauchy problems that is given below is (more or less) a special
case of it.

Definition 2. Let u: R"™ x [0;400) — (—o0;+00] be a lsc and proper function.
e It is a supersolution of (1) if for all (z,t) € dom u, t > 0, and all ({,a) €

Orpu(x, t) :
(4) a+H(()=>0
and for all x € R™ :
() w(z,0) = g(z)-
o It is a lsc subsolution of (1) if for all (z,t) € dom w and all ((,a) €
Oru(z,t) : :
(6) a+H(() <0
and for all x € R™ :
(7) u(z,0) < g(z).

e [t is a Isc solution of (1) if it is a super and a subsolution of (1), that is
for all (z,t) € dom u and all ({,a) € Opu(z,t) :
a+H()=0ift>0,
a+ H(C)<0ift=0,

and for all x € R™:
u(z, 0) = g(x).
In [12], these lsc solutions are characterized in terms of directional derivatives
and of approximate decrease properties.

1.2. Definitions and results from convex analysis. In this subsection we pre-
sent basic tools and classical results of Convex analysis. The interested reader is
referred to [19, 11] for a complete presentation of them.

We first recall some definitions. The Legendre-Fenchel conjugate of a proper
function f: R"™ — (—o00;400] is defined by the following formula:

for all ¢ € R", f q) = S;ﬂg}{(%@‘f(x)}-

The function (f*)*, that we simply denote by f**, is called the closed convezr hull
of f. If f is Isc and convex, f** coincides with f. The subdifferential from Convex
analysis of f : R® — (—o0;+00] at = € dom f is the set

of(x) ={CER™ : Vye R (y —z,{) < f(y) — f(z)}.
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When the function f is convex, the two subdifferentials O f(z) and df(x) coincide
at any point x of R™. The following characterization holds:

(€df(z) & flz)+ (¢ = {z.¢)

It is known as Fenchel’s equality, while Fenchel’s inequality

Q)+ fa) = {z,¢)

always holds true. The indicator function of a subset A C R" is denoted by t4
and is defined by: t4(z) = 0if 2 € A, ta(z) = o0 if z ¢ A. Given two functions
g,h : R" — (—00;+0], the epi-sum of g and h is denoted by g + h and is defined
for all =z € R™ by: 2

Q 9 hla) = inf {a(e — ) + h(»)}.

The notion of epi-sum is also known as the inf-convolution operation. But it has
the following equivalent definition: g 4+ h is the only function f such that its strict
epigraph (i.e. the set of all points @',T) € R™ x R such that f(y) < r) is the
Minkowski sum of the strict epigraph of g and the strict epigraph of h.

A straightforward calculation yields, for all t > 0 and =z € R :

uLax(z,t) = 9t (tH)*(x)

(9)
UHopf (:E, t) = (9" + tH)*(:E)

(the Legendre-Fenchel conjugates and the epi-sum are calculated with respect to
the z variable). Since we want to prove that upax is a lsc solution of the Cauchy
problem (1), the Fréchet subdifferential of an epi-sum must therefore be studied.
Existing results about convex subdifferentials of epi-sums of convex functions (such
as stated in [14, 2] for instance) suggested the following lemma.

Lemma 1. Consider three functions f,g,h : R™ — (—o00; +00] and a point x € R™
and assumne that f is the epi-sum of g and h. If there exists y € R™ such that

flx) = g(x —y) + h(y), then:
drf(z) C Opg(z —y) N Oph(y).

The proof is elementary and we omit it.

We next recall the statement of the so-called multidirectional mean value inequal-
ity. We do not give the most general version but we adapt it to our framework. The
closed unit ball of R™ is denoted by B and for any subset Y € R", [z, Y] refers to
the convex hull of {z} UY.

Theorem 1 ([8, p. 116-117]). Let Y be a compact convexr subset of R" and let
z € dom f where f : R" — (—o0;+00] is a lsc proper function. Then for any
r < infyey{f(y) — (z)} and any e > 0, there ezists z € [z,Y] + €B and { € Opf(2)
such that, for all y € Y,

< (C: Y= x)

In [7], the authors studied the subdifferential of the closed convex hull of an
extended real-valued function f. They exhibit a formula linking the subdifferential
of ™ and the subdifferential of f. In order to state their main result, we must
introduce two other notions.
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Definition 3 ([7, Prop 4.5, p. 1669]). Consider f : R* — (—00;+00] that is Isc,
proper and bounded from below by an affine function. Then we say that f is epi-
pointed if the domain of the Legendre-Fenchel conjugate of f has a nonempty inte-
Ti0T.
Definition 4 ([7, Prop 4.4, p. 1668]). Consider f : R* — (—00;+0c]. Under
assumptions of Definition 3, the analytical definition of the so-called asymptotic
function fo of f is:
d/
d)= liminf tf|{—].
fold) = i 11 (%)
If f is convex, fu has an alternative analytical definition.
Proposition 1 ([19, p. 66]). If f is convez, the following equality holds true for all
deR™: |
foold) = sup {f(d+u)— f(u)}.

ucdom f
Observe that in this case the asymptotic function is sublinear and vanishes at 0.
We now state the main result of [7].
Theorem 2 ([7, p. 1669]). Let f : R® — (—o0;+00] be a lsc, proper and epi-pointed

function. Then the following holds:
(i) For all x € dom f**, there are points xy,..., rp, € dom f, positive numbers

AL, .. Ap (p > 1), and possibly points y1,- . .,yq in dom feo\{O} such that:

Z’\FL

1=1

P q
< xZZAiCEi"’Z'ij
j=1

=1

@) =D Mf(@) + ) feolyy)-

=1 =1

(ii) For any decomposition of the type described in (i), we have

8f™ () = [Ny (2] N [M18f (1) -

Remark 1. Even if f is not convex, we can define the subdifferential of f in the sense
of Convex analysis. In general, it is empty, but by Theorem 2, 9f(z;) is nonempty.
This implies (see [14, p. 350]) that f(z;) = f**(z:).

2. THE LAX FUNCTION

The present section is devoted to the proof of Theorem 3 stated below. We say
that the Lax function is regular if it is lsc, extended real-valued and if the infimum
defining the real number upax(x,t) is attained for any (z,t) € dom upax-

Theorem 3. Let H : R® — R be convex and let g be lsc and proper. Then if the
Laz function is regular, it is a lsc solution of (1) (in the sense of Definition 2).
Moreover, it is the mazimal Isc subsolution of (1).
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Remark 2. If the infimum defining upax(z,t) is taken on a bounded set for all (z. 1),
ULax is Tegular. It is the case when g is bounded from below by —C(1 + |z|} for
some constant €' > 0. This assumption appears in [1].

Remark 3. For the sake of simplicity, we assume that upax is regular. But if the lsc
closure of upy is extended real-valued, it may be proved that it is a lsc solution of our
Cauchy problem. Such considerations appear in [13, 17] in an infinite dimensional
setting.

Before proving the theorem, we try to explain how we proceed. In order to
prove that the Lax function verifies (1), we apply Lemma 1. If it is applied using
representation (9), we only get a description of the partial Fréchet subdifferential
of up . with respect to z. Though we try to establish o + H(() = 0 for all (¢, )
in the subdifferential of 4., we loose the interdependence between x and ¢. This
is the reason why we rewrite the Lax function as an epi-sum of two functions with
respect to the couple of variables (z,t). This idea is inspired by a theorem from
[18]. The author proves that wup., is a classical solution of our problem under
strong assumptions. He uses tools from Convex analysis such as Legendre-Fenchel
conjugates and epi-sums. Besides, even if the formula does not appear explicitly,
he writes up.x under the following form:

Lemma 2.
ULax = G —g H* on [0;+00) x R™,

with

{ Gy, s) 9(y) + 1y (s),
H(y,s) = w-(H(y)+s)

Here the epi-sumn and the Legendre-Fenchel conjugate are calculated with respect to
the couple (v, s).

Proof of Lemma 2. We calculate the Legendre-Fenchel conjugate of H:

H*(y,s) = suplas+ ((y) —w-(a+ H()}

a7C
= sup sup {as+((y)}
¢ a<-H(()

If s < 0, H*(y, s) = +oc. Otherwise: H*(y,s) = sup{(¢,y) — sH(Q)} = (sH)*(y).
For t > 0, this yields:

(64 7) @.6) = inf{gla —y) + oyt = 5) + H'(w,9)}
= int{g(x —y) + (LH)"(4)} = wrax(2.)
O

Proof of Theorem 3. The initial condition is trivially satisfied. Consider any point
(z,t) € dom upay and any ((,a) € Opurax(z,t). Since we assumed that upay is
regular, there exists (y, s) such that:

uLax(z,1) = g(z —y) + CH)*(y) = Gz —y, t — 1) + H'(y, ).
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We can therefore apply Lemma 1: (¢, «) € OpH*(y,t) N OpG(x — y,0). Since H* is
convex, it follows that (¢, ) € OH*(y,t). Using the convex duality, we get:
(y,t) € TH(C, ).
This implies that (¢, «) lies in the domain of H. We therefore obtain:
a+ H(() <0.
Suppose now that ¢ > 0. Fenchel’s equality vields:

(Cyh+at = H(G,a) + H(y,t) = 0+ (tH)"(y) =t (&)

Use now Fenchel’s inequality and get: o = H* (¥) — (¢, %) > —H(().

It remains to prove that the Lax function is the maximal lsc subsolution of (1).
Consider any lsc subsolution w. For any = € R™ : w(z,0) < g(z) = upax(z,0). It
therefore remains to prove that for any (z,t) € R" x (0; +o0) and any y € dom H™ :

w(z,t) < g(x —ty) + tH (y).
Suppose it is false. There then exists (z,t) € R™ x (0;+00), y € dom H* such that:

w(z, t) > g(x — ty) + tH" (y) = w(z — ty,0) + tH" (y).
Apply Theorem 1 to the Isc function w between the two points (z,¢) and (z —ty,0) :
for any € > 0, there exists (z,7) € [(z,t), (z — ty,0)] + ¢B and (z*,t*) € dpw(z,r)
such that:
tt* + (ty,z*) > tH*(y)

= "+ (y.2") - H"(y) > 0.
Since w is a lsc subsolution, ¢* + H{z*) < 0. We conclude that:

(y,a") — H'(y) = H(z") > 0.

The last inequality is in contradiction with Fenchel’s inequality. O

3. THE HOPF FUNCTION

In this section, we prove Theorem 4 stated below. We did not recall the definition
of a continuous viscosity solution but it can be found, as we already mentioned it,
in [9].

Theorem 4. If H : R™ — R is continuous and g : R* — (—o0; +00] is Isc, proper
and convez, then the Hopf function is a supersolution and it is a continuous viscosity
solution of (1) on the interior of dom ugepf.

If, moreover, H is bounded from above by a Lipschitz function, then upopr ts the
minimal supersolution of (1).

It is well known that upgepr is convex with respect to the couple of variables
(z,t). But it is a remarkable fact that it can be expressed with the same extended
real-valued functions we used to rewrite the Lax function (namely G and H).

Lemma 3.
Upopt = (G* + H)" on R™ x [0; +00)
where Legendre-Fenchel conjugates are calculated with respect to the couple (y, s).
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Proof. First, we calculate G*:
g a) = e {as + (¢ y) — 9(W) — vy (s)}
= sx;pﬂc,y) -9)} =g7(Q).

Fort > 0:
(G" +H) (z,t) = sug{at + (z,{) — §7(¢, o) — H((, o)}
= sup sup {at+(z,¢) - g"(()}
¢ a<-H()
R {{, Q) — ug(C) — tH ()} = uHopt (T, 1) O

Remark 4. The reader may observe that upeps is Isc on R™ x [0; +0cc).

Proof of Theoremn 4. Let us set v := G*+H. Lemma 3 asserts that the Hopf function
is the Legendre-Fenchel conjugate of v. The closed convex hull of v, denoted by v**,
is used throughout the proof.

We first prove that upeps is a supersolution of (1).
Fix (z,t) € dom upeps, t > 0. Then consider (¢, «) € Qupopt(z,t) = dv*(z,t). This
implies that (¢, a) lies in the domain of v** (the closed convex hull of v), and that
(z,t) € O™ ((, ).

e First case: if v™*((,a) = v((, ).

Then the convex subdifferential dv**((, «) coincides with the convex subdifferential
Ov(¢,a) (see [14]). In particular, (z,t) € 0v((,«). Hence for all 3 € R and all
EeR":
t(B—a) +(z,§ — () <w(,B) —v(( a)
(10) <9"(&) + - (H(E) + 8) — g"(Q) — - (H(C) + ).
Setting £ = ¢ and 8 = —H((), we get: t(—H(() — o) < —g-(H(() + «). Thus,
- (H(()+a)=01ie H(()+ a <0 and:
t(—H(()—a) < 0
< H(()+a = 0.
=0.

Q

Finally, we conclude that, in this case, H({) +

e Second case: if v™*({, ) < v((, a).

We remark that v > ¢*, hence g* < v™ < w.
If a+ H(¢) <0, v(¢,a) = g*(¢), and using the previous inequality, we obtain:

2™((,0) = v((, a).
We conclude that, in this second case, o + H({) > 0.
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Finally, in both cases, o + H({) > 0; we thus have proved that upeps is a super-
solution of (1).

We continue the proof of Theorem 4 by proving that it is a continuous viscosity
solution of (1) on the interior of dom upeps. We therefore assume that this set is
nonempty. Remember that the Hopf function is the Legendre-Fenchel conjugate of
v. We conclude that v is epi-pointed (see Definition 3). Consider now any point
(z,t) € int(dom wpept), and any Fréchet supergradient ({, «) € 8FuHOpf(m, t). Since
UHopf 18 convex, we know that dumept(r,t) = Opunopt(z,t) is nonempty. We con-
clude that upepr is differentiable at (z,t). This means that there is one and only
one (¢, a) € Juneps(,t). There then exists a unique couple ((, @) such that:

(. thedv'(Cla):

We now show that v**({, @) = v({, @). Applying Theorem 2 to v, there exists points

(gl(,ial}, .+ (¢py ap) and possibly points (1, 31), ..., (&g, 8,) such that 35 ;X\ =1
and:

(x,t) € (G, ).

This implies that p = 1, @y = a and ( = ¢ and >°7_,(§;,8;) = 0. Hence, the
following equality holds true:

q
G a) = o(C )+ ve(&5 )

j=1
q
> U(C,Q)‘i"voo Z(fﬁsj’)
=1

= o(¢,a) 2 V().

We used the fact that vy is sublinear and equals 0 at 0. Since v**({, ) = v((, a),
we proved above that a + H({) = 0 < 0. We conclude that ugepe is a continuous
viscosity solution of (1) on int(dom wpops)-

To achieve the proof of Theorem 4, we must prove that the Hopf function is
the minimal supersolution of (1). Consider a supersolution w of (1), and let us
prove that w > wupepr. By assumption, H is bounded from above by a Lipschitz
continuous function. There then exists a Lipschitz continuous function H; such
that w is a supersolution of (1) with H = H;. We can therefore assume that H is
Lipschitz continuous. Remember that upopt(z,t) = sup {(¢,x) — ¢*({) — tH({)}.
Let us consider some (p € dom ¢*, and define a new function w; as follows:

wi(z,t) = w(z,t) = (o, ) + g"(Co) + tH((o)-
We have to prove that w; > 0. We first remark that w; is a supersolution of the
following Cauchy problem:
(11) 9w + G(Dw) =0 inR" x (0;+00),
(12) w(.,0) =0 in R™,
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where G denotes the new Hamiltonian defined for all ¢ by G(¢) = H(¢+¢o) — H (Co)-
Indeed,

w1(0,7) = w(0,z) — {Go,z) +g"(¢o) = g(x) — (S0, 7} + 9" (Go) 2 0-
Moreover, for all (z,t) € dom wy, for all (¢, &) € drpw(w,t) :
(¢, @) = (C1,01) + (=G0, H(Co)):
with a1 + H(¢1) > 0. Hence
a+G(()=a+H(+ )~ H(G) =01+ H(G) 20

The reader may remark that G(0) = 0 and that G is a Lipschitz continuous function.
We denote by K a Lipschitz constant of G.

Suppose that there exists some (Z,) such that wy(Z,7) < —A < 0. Let us fix
R > 0 and let B(Z, R) denote the closed ball centered at Z of radius R. The lower
semicontinuity of w; implies that there exists t €]0, ], such that for all z € B fz, R}

(13) O§w1($,§)+%.

Combining (13) with wy(Z,t) < —A, we obtain:
A
5 S wl(a’;:L) E u’l(j:f):

for all z € B(z, R). We next apply the mean value Theorem 1 to the Isc function
wy with Y = B(Z, R) x {t} as the closed convex set on which w; is bounded from
below.

Ve > 0,3(z,7) € [(%,%), Y] + €B(0,1),3(¢, @) € Opwn(z,7) :
(19 vee B@E R), 2 <G @9 - @),

Observe that 7 € [t — ¢, + ¢]. We therefore choose € < t in order to ensure 7 > 0.
Since w; is a supersolution of (11)-(12): a + G(¢) > 0. Now (14) yields

< at—t) — R|¢| < GO —t) — R[C]-

w| [

I

Since G is Lipschitz G(0) = 0, we conclude that:

< (K(E-t) - R)[¢] < (KT - R)|(].

nd
A
3=
This vields a contradiction for all R large enough. The proof of Theorem 4 is
therefore complete. (&
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