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1. Introduction

We deal with Hamilton-Jacobi equations

{Dfu(:u 04 H(Dpu(z,t)) =0 in X x T4 (1.1)

w(z,0) = g(x) in X

in which the variable ¢ is not real but vectorial and the hamiltonian / is a vector-
valued mapping. For instance, multitime Hamilton-Jacobi equations introduced
by Lions and Rochet (1986) enter into this framework.

Let X, T be two real Banach spaces. Their respective topological duals are
denoted by X*, 7. Consider a closed convex cone T C T and define a vectorial
preorder on 1" in the following way: for any s,t € T,

skl o t—-seTy. (1.2)

The bilinear couplings between X and X* and between T and T™ are both
denoted by {-,-}. The set of all continuous linear forms defined on X which are
nonnegative on 1y is denoted by 17 :

T: = {t* € T*:Vt € Ty, {t,t") > 0}.
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The w*—closed convex cone T’} coincides with the set of continuous linear forms
defined on T that are nondecreasing with respect to (1.2). Moreover, T} induces
a vectorial preorder on T* : for any s*,t* € T*,

't & tT-s"eT]. (1.3)

Let us introduce a mapping H defined on a nonempty subset dom H of X* with
values in T™* :

H:domHCX*—T" (1.4)
and a lower semicontinuous (Isc for short) proper function
g: X — RU {+o0}.

We say that H is T -convez if dom H is convex and if for any z*,y* € dom H,
A € [0,1], one has

HOz® + (1 - A)y*) <« AH(z*) + (1 - MV H ().
If we define the epigraph of H by
epiH = {(z*,t*) € X* x T* : t* %, H(z")},

then the T} -convexity of H is equivalent to the convexity of its epigraph.

Before making it more precise in what sense (1.1) is solved, we need to recall
what a subgradient is. For a given function u : X x Ty — RU {+oc}, a couple
of vectors (z*,t*) € X* x T* is a so-called Fréchet subgradient of u at a point
(z,t) € X x Ty if for any (y,s) € X x T,

(y—z,2") + (s —t,£") Su(y, s) — u(z, ) + o(|(y, 3) - (z,1)]) (1.5)

where o(-) is a function such that o(z)/|z| — 0 as £ — 0. The couple (z*,t*) €
X* x T* is said to be a subgradient in the sense of conver analysis if (1.5) is
true with o(-) = 0. The set of all Fréchet subgradients (resp. subgradients in
the sense of convex analysis) is referred to as the Fréchet subdifferential (resp.
subdifferential in the sense of conver analysis) of u at (z,t) and is denoted by
dru(z,t) (resp. du(z,t)).

The generalized solutions of (1.1) are defined by adapting the Crandall-Lions’
notion of viscosity solution, Crandall and Lions (1983), or some extensions of
it, Barron and R. Jensen (1990), Frankowska (1993). A Isc proper function
u: X x Ty —» RU{+o0} is a subsolution of (1.1) if for any (z,t) € X x T,
any (z*,t*) € Oru(z,t), one has t* + H(z*) <. 0 and if u(z,0) < g(z) for any
z € X. The function u is a supersolution of (1.1) if for any (z,t) € X x int T,
any (z*,t*) € dpu(z,t), one has t* + H(z*) . 0 and if u(z,0) > g(z) for any
z € X. The function u is a solution of (1.1) if it is both a subsolution and
a supersolution. Note that the concept of supersolution is inoperative if the
topological interior of the ordering convex cone T is empty.
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The reader may observe that if int T, is nonempty, then the dual cone TY is
pointed so that T* is partially ordered instead of partially preordered. There-
fore any solution w of (1.1) satisfies for any (x*,t*) € dpu(x, () with ¢ € int T :
t* = —H{(z"). A referee kindly pointed out to us that the previous observa-
tion remains valid if one extends the concept of supersolution by replacing the
topological interior of T with

T ={teT:Vt" € Ty \ {0},{t,t") > 0}.

Nevertheless, although many results of the paper can be stated with this concept
of supersolution, our proof of Proposition 7 requires the topological interior of
T, to be nonempty.

The paper is organized as follows. In Section 2, we introduce the genera-
lized Hop! function and describe its subdifferential (Proposition 3). When g¢
and epl A are convex, we prove that uyope s a solution of (1.1) (Theorem 1).
The generalized Lax function is considered in Section 3. Under a regularity
assumption we prove that up.y is a solution of (1.1) {Theorem 2). Next we
prove that the lsc convex hull of up.y coincides with upeps (Theorem 3). The
uniqueness of the solution of (1.1) is studied in Section 4; we prove that wupay
and upept are respectively the greatest Isc subsolution and the lowest weakly lsc
supersolution (Theorems 4, 5, 6). Several examples are presented in Section 5.

The remaining part of the present section is devoted to definitions and no-
tations that are used throughout.

Let Z denote an arbitrary Banach space and consider a function f : 7 —
RU{+o0}. The Legendre-Fenchel conjugate of f is denoted by f* and is defined
on Z* by the following formula:

f(z") = sup{{z*.2) — f(z)}.
zE€Z

The function f**=(/*)* defined on Z instead of Z** turns out to be the greatest
Isc and convex function bounding f from below. [t is known as the lsc convex
hull of f while the lsc hull of [ i1s denoted by [ and 1s defined by:

f(z) = lim inf f(y).

As usual T'g(Z) denotes the set of lsc proper convex functions defined on Z and
Lo(Z*) denotes the set of weakly-+ lsc proper convex functions defined on Z*.
Subgradients (in the sense of convex analysis) z* € Jf(z) are characterized by
the so-called Fenchel’s equality:

(2" 2) = f2) + F7(z7),

while Fenchel’s inequality holds true for any 2%, 2 :

(", 2) 2 [(2) + [7(27).
Consider two arbitrary sets A, B C Z. Then, [A4, B] denotes the convex hull of
AUB. To finish with, the indicator function of 4 is denoted by ¢4 and is defined
by setting ia(z) = 0if z € A and 1a(z) = +o0 if z & Al
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2. The generalized Hopf function

In this section, we assume that g is Isc and proper and we consider a mapping
H as in (1.4). For any t € Ty, let us define the composite function

(toH)(z*) = {(t,H(z*)) ?fﬂv* € dom H,
+0o0 if not.
Observe that to H is convex if H is T}-convex. The generalized Hopf function is

defined as a certain Legendre-Fenchel conjugate with respect to the x variable:
for any (z,t) € X x T4,

'U'Hopf(xat) = (g* +tOH)*(£L‘) (21)
that is to say )
Utopt (T, ) = sup (z,z*) ~ ¢"(z")— (t, H(z")). (2.2)
z*€dom g*Ndom H

In order to ensure that upeps does not equal —oo, we assume that
dom g* Ndom H # 0. (2.3)

Throughout, some functions u are only defined on X x T} (as UHopt)- It is
convenient to set u(z,t) = +oo for (z,t) ¢ X x T, so that u is defined on the
whole space X x T.

PROPOSITION 1 The Hopf function belongs to To(X x T) and one has
UHopt (-, 0) < g. (2.4)
Equality holds true in (2.4) if g is convez and if dom g* C dom H.

Proof. From (2.2), we get that upops is the supremum of a family of continuous
linear functions on X x T. Moreover, one has

'“‘HOPf(-'L' 0)=(g"+ tdoma)"(2) < 9(z).

This 1mphes that upgoept is proper and that UHopf( 0) = g** = g whenever
dom g* C dom H and g is convex. |

We now explain how to rewrite unopt as a Legendre-Fenchel conjugate with
respect to the (z,t) variable (see Imbert, 2001, for the scalar case). Let us define
a function ® € I'o(X™* x T*) by

Q(w*at*) = g*(x*), (2'5)

and let us introduce the symmetrical of the epigraph of H with respect to the
X*-axis:

epi H = {(z",t*) € X* x T* : H(z") <+ —t"},
We claim that
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PROPOSITION 2 Upopt = (¢ + L$H)*.

The following corollary provides upper and lower estimates of the Legendre-
Fenchel conjugate of upeps. For an arbitrary set A, T0A denotes the w*-closed
convex hull of A.

Al ¥ o
COROLLARY 1 @+t < Uggpy SOty

Let us study the Fréchet subdifferential of the Hopf function. Counsider

m

an arbitrary point (z,t) € X x T4 and an arbitrary subgradient (z*,t*) €
Ipunopt(z,1) = upopt(z,t). By Corollary 1 and (2.5), we know that z* €
dom g* and (z*,t*) € toepi H. Using Fenchel’s equality, we get

(5,57 + (6,8°) 2 unopi(, ) + 97 (7). (26)

Besides, we notice that 2* € dugops(.,t)(z). Hence Fenchel’s equality and (2.1)
yield

(z,2") = unopt(z,t) + (¢" +to H)™ (27)
< unopt(z,t) + g™ (&™) + (to H)(x"). (2.7)

Combining (2.6) and (2.7), we finally obtain that
0 < {t,1%) + (to H)(a").
Let us gather what we just proved in the following proposition.

PROPOSITION 3 For any (z,t) € X x T+ and any (z*,t*) € Opunept(,t), one
has

(2*,t*) e Toepi H (2.8)
z* € domg”® .
{t, ")+ (to H)(z*) > 0 (2.10)

REMARK 1 In the scalar case (T = R), when domg* C dom H, (2.9), (2.10)
and Proposition 3 entail that upepr 15 a supersolution of (1.1) (see Alvarez,
Barron and Ishii, 1999).

In view of (2.8), it seems interesting to investigate what happens when the
epigraph of H is w”-closed and convex.

THEOREM 1 Assume that g is lsc and proper, that epi H is w”-closed and con-
vex, and that (2.3) holds. Then, for any (z*,t*) € dpunopt(z,t), t € T4 (resp.
t € int Ty ), we have t* + H(z*) <4 0 (resp. * 4+ H(z*) = 0). In particular,
Usiopt 45 a subsolution of (1.1). Moreover, if dom g* C dom H and g is conve,
then unept is a solution of (1.1).
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Proof. Let (z*,t*) € Opunopt(z,t) = Ounopt(®,t). As epi H is w*-closed and
convex, (2.8) reads H(z*) <. —t* and, since upopt(-,0) < g, Unopt is a subsolu-
tion. Moreover, by (2.10), one has (t, H(z*)+t*) > 0. Now since H(z*)+t* <. 0,
the linear form s — (s, H(z*) +t*) is nonpositive on T . Therefore, if ¢ belongs
to int 7., then ¢ is a local maximum of the linear form, so that H(z*) +¢* = 0.
Consequently, when dom g* C dom H, upeps is a solution of (1.1). ]|

The study of the Hopf function when g = ¢{oy will be useful in the following.
In this case, g* =0, ® = 0 and we have (see Proposition 2)

(to H)*(z) if(zt)e X xTh

3 ,t = i‘- 9t . 3
UHopt (%, t) Lele(:C ) {+OO if not.

It therefore follows from Theorem 1 that

COROLLARY 2 Assume that epi H is w*-closed and convex and consider a point
(z,t) € X x T4+. Then for any (z*,t*) € BLLH(:E,t), one has
epi
t+ H(z™) <. 0.
If, moreover, t belongs to int Ty, then t* + H(z*) = 0.

3. The generalized Lax function

Let g : X — RU {+o00} be a lsc proper function and assume that epiH is
nonempty, w*-closed and convex. The generalized Lax function is defined as a
certain infimal convolution (denoted by O) with respect to the x variable:

uan(z, 1) = 4 9O (o H) (@) if (z,8) € X x T4
o +o0 if not.

For any (z,t) € X x Ty one has, by definition,
uLax(2,) = inf l9(z = y) + (¢ 0 H)"(y)). (3.1)

The infimal convolution defining uy .y is said to be ezact if the infimum in (3.1)
is attained.

If no further assumptions are made, up.x is neither convex nor Isc. Observe
that

ULax(-:O) =g O L:}omH S s

which implies that #p., is not identically equal to +oo. But up., may take the
value —co. As in the scalar case Imbert (2001), the generalized Lax function
can be expressed as an infimal convolution of two functions defined on X x T
by using the following function

Gy = {90 ift=0
: +oc if not.
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PROPOSITION 4 tp., = GO~ .
epi H

COROLLARY 3 If g is convez, $0 is ULax-

We know from Theorem 1 that upnepe is a subsolution of (1.1). In order to
prove that so is upax, a regularity condition is required. As in Imbert (2001),
the generalized Lax function is said to be regular if it is Isc, proper and if the
infimal convolution in (3.1) is exact when finite. Such a condition holds true
under assumptions of Proposition 5 and in Examples 5.1 and 5.2 below. In the
scalar case, several sufficient conditions can be found in Penot and Volle (2000),
Prop. 3.1.

THEOREM 2 Let g be lsc and proper and assume that epi H is nonempty, w*-
closed and conver. Moreover, assume that wy.y s regular. Then it is a subsolu-
tion of (1.1). If, moreover, dom H = X* orif dom g* C dom H and g € I'g(X),

then Uiy is a solution of (1.1).

Proof. Let (2*,t*) € Opupax(z,t). As upax is regular, the infimal convolution
n (3.1) is exact. It therefore follows from Proposition 4 and the well-known
subdifferential calculus rule (see e.g. Lemma 5 in Imbert, 2001) that there exists
y € X such that

(z*,t*) € 9pG(z — y,0) N 31:%;1”(31, t).

Since epi H is convex, (z*,t*) € BLL_H(y, {) and by Corollary 2, one has H(z*)
epl

<. —t*, that is to say up.x is a subsolution. If, moreover, ¢ belongs to int T,

then Corollary 2 implies that H(z*) = —t*; it follows that wp.y is a solution of

(1.1) provided that g O}, 5 = g holds true. Such an inequality is verified if
dom H = X* or if domg* C dom H and g € I'g(X). |

The next resull sheds light on an interesting link between the functions unept
and Upax.

THEOREM 3 Let g be lsc and proper and suppose that epi H is w*-closed and
conver. Assume moreover that

dom ¢g* Ndom H # (.

Then upax s proper and uf,, = u*Hop[- 50 that upept is the lsc convexr hull of
ULax-
If, moreover, g is convex, then wpopt s the isc hull of upay.

Proof. Observe that G* = @ (see (2.5)). Using Propositions 4 and 2, we get
Ulaxy = @ + iy = UHopt: We then obtain ui}, = #Hopr and since ugeps Is
proper, Uray does not take the value —oco. If g is convex, up.y is also convex and
the Isc hull of upax coincides with uj* = wnopr. [ |

We just have seen that when g is convex wpay and tpepe are very close. Let
us give a condition under which they coincide.



500 C. IMBERT, M. VOLLE

PROPOSITION 5 Assume that X, T are reflerive spaces, that g € T'o(X) and
that cone(dom g* — dom H) is a closed linear space. Then urax is regular and it
coincides with UHopt.

Proof. By Attouch-Brezis Theorem, Attouch and Brezis (1986), one has

UHopt = (P + LepiH) GO tp = ULax

whenever cone(dom @ — gﬁiH ) is a closed linear space. Moreover, the infimal

convolution G O t*~  is exact. Looking at the definition of ®, (2.5), one can
epi

see that dom ® = dom g* x T™* so that dom ® — e}?iH = (domg* —dom H) x T™
and the required condition holds. [ |

4. Bounds for subsolutions and supersolutions

In this section, we prove that any lsc subsolution of (1.1) is lower than or equal to
uLax and that any weakly lsc supersolution is greater than or equal to upeps- As
in the scalar case, proofs are based on Clarke-Ledyaev’s mean value inequalities.
To avoid theoretical complications, we assume in this section that X and T are
Hilbert spaces (see Borwein and Zhu 1996, Penot and Volle, 2000, for possible
extensions to more general spaces). Under appropriate assumptions we obtain

_that ugopt is the unique solution of (1.1). Unless specified otherwise g is just an
Isc proper function defined on X and H : dom H C X* — T* is just a mapping.
In the following, B denotes the unit ball of any space (X, T, X x T etc.).

PROPOSITION 6 Let u be a lsc subsolution of (1.1); then u < upax-

Proof. According to (3.1) we have to prove that for any z,y € X and any
t € T, one has

u(z,t) < g(z —y) + (Lo H)"(y).
As u(.,0) < g it suffices to prove that
u(z,t) < u(z —y,0) + (to H)*(y). (4.1)

If u(z — y,0) = +4oo, it is clear. If not, choose 7 < u(z,t) — w(z — y,0).
By the multidirectional Mean Value Inequality due to Clarke and Ledyaev
(Clarke, Ledyaev, Stern and Wolenski, 1997, p. 117), there exists a point (2,8) €
[(z,t), (x—y, 0)]+B and a subgradient (z*,t*) € dru(z,s) such that r < (y,z*)}+
(t,t*). Using the fact that u is a subsolution, we know that H(z*) <. —t*, and
since t € T, we finally obtain

r < (y,z") = (t, H(z")) < (to H)*(y).
As r < u(z,t) — u(z — y,0) is arbitrary, we get (4.1). u
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THEOREM 4 Let ¢ be lsc and proper, let epi H be closed and conves and lel
be reqular. Then up.y is the grealesi lsc subsolution of (1.1).

Proof. Apply Theorem 2 and Proposition 6. |

When ¢ and epi H are convex, we obtain (see lmbert, 2001, for the scalar
case):

THEOREM 5 Assume that g € To(X), that epi H is closed and convexr and that
(2.3) holds. Then upopt s the greatest Isc subsolution of (1.1).

Proof. By Theorem 1, tpops is a subsolution. Theorem 3 ensures that upapr Is
the Isc hull of wr .y It then follows from Proposition 6 that upeps 1s the greatest
Isc subsolution of (1.1). |

From Proposition 1, we know that upeps is convex and lsc. Tt follows that
Ugopr 18 also weakly Isc. In the next result, we show that ugepr bounds {rom
below any weakly lsc supersolution of (1.1). Asin the scalar case, Imbert (2001),
the proof relies on the Mean Value Inequality.

PROPOSITION 7 Assuwme that H is Lipschitz continuous on its domain and that
q is lsc and proper. Then for any weakly lsc supersolution w of (1.1) one has

Uptopt < w an X X int T
Proof. Let y* € dom g* Ndom H and define

wlz, t) = uw(z, t) = {z,y") + g"(y") + (¢, H(y")).
Observe that w is weakly Isc and w(.,0) > 0. We have to prove that w > 0 in
X xint T4,

Assume the contrary: there exists (Z,£) € X xint 7% such that w(z,{) = —«
with @ > 0. For any r > 0 we claim that there exists { in the line ]0,¢[ such that

o!
w(z,t) = -3 for all x € B(z, 7). (4.2)
If such a i does not exist, then for any integer n > 1 there exists a point

xy, € B(z,7) such that w(w,, -1-11-[) < —%. Considering a weakly convergent sub-
sequence &, — x, we therefore obtain the following contradiction:

1 1
0 < w(z,0) < liminfw (:L‘I,, - t) < —

p—+o0 Vi

o

Let us set ¥ := B(&,r) x {t}. From (4.2) we get

Vi{a, t) € Y, w(x, t) —w(z, i) > %
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By the Mean Value Inequality (Clarke, Ledyaev, Stern and Wolenski, 1997,
p. 117), for any € > 0, there exists a point (z,t) € [(Z,%),Y] + ¢B and a subgra-
dient (z*,t*) € pw(z,t) such that

(x—Z,z*) + (T -, t*) > % for all z € B(z,7).

Looking at the definition of w, we observe that (z* +y*,t* — H(y*)) € dru(z, t).
Next, € > 0 is chosen small enough in order to ensure that ¢ € int 7T and,
consequently, H(z* + y*) = H(y*) — t*. We then have

(#=2,2°)+ (t-L,H(z" +y") - H(y")) 2

% for all z € B(z,7).
If K denotes a Lipschitz constant of H, the previous inequality yields

—rlz*| + K|f)|z*| > %

A contradiction is obtained by choosing 7 = K||{|. Hence w(Z, %) > 0 and ugops <
uin X X int T7. [ ]

From Theorems 1 and 5 and Proposition 7, we obtain the following unique-
ness result.

THEOREM 6 Assume that H is Lipschitz continuous on its domasin, that epi H
is closed and convez and that g € T'o(X) with domg* C dom H. Then ugqps
ts a weakly Isc solution of (1.1) and any weakly Isc solution of the vectorial
Hamilton—Jacobi equation (1.1) coincides with unops on (X x int T4 ) U X x {0}.

5. Examples
5.1. Multitime Hamilton—-Jacobi equations

In order to apply the results of the previous sections to multitime Hamilton—
Jacobi equations introduced by Lions and Rochet (1986), we consider the space
X = R", the two convex cones T = R* = T*, T = R} = T} and the n functions
Hy,...,H, : R* - RU{+} and g : R* — R U {+o00}. The corresponding
multitime Hamilton—Jacobi equation is

du R ,

-5t—+Hi(D,u)=01n]R xRy, 1<i<n,

i
u(z,0) = g(z) in R".

Such a system may be written as in (1.1) by defining the mapping H as follows:

H(z*) = (Hi(z"),...,Ha(z")) for all z* € N, dom H;.
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We then have for any z € R™ and any t = ({1,...,%,) € R} :
. . T -
'U'Hopf(w:t) = (g + Zt1H1) (I)
i=1

ULaxlz, i) =g O (Zn:tiHi)*(;r;)

i=1

Observe that if H; € To(R™) for ¢ = 1,...,n, then epi H is closed and convex.

5.2. Linear vectorial Hamilton—-Jacobi equations

Assume that X, T are Hilbert spaces, that A : X — T is continuous and linear
and denote by A* : T'— X the associated transposed linear mapping. Let also g
be a lsc proper function defined on X and consider the following linear vectorial
Hamilton—-Jacobi equation

Diu(x, t) + A(Dyu(z,t)) =0 in X x T, .
u(x,0) = g(x) in X. (5.1)

Here H = A is continuous and linear so that its graph is a closed linear space.
Choosing Ty = T one has T'; = {0} so that the epigraph of H with respect to
T coincides with the graph of A and one has

to H)'(y) =

o170 ={ % ifaor
1t follows that up.x(x, ) = g(a—A*(¢)) for all (z,1) € X xT and it is regular. By
Theorem 2 it is an lsc solution of the linear vectorial Hamilton-Jacobi equation
(5.1). By Theorem 5 it is the greatest lsc subsolution of (5.1). The Hopf
function is given by wpgept(z,t) = g**(w— A*(t)). If g € To(X) then ugoept(z,t) =
g(z — A*(t)) is the unique weakly lsc solution of (5.1) (see Theorem 6).

5.3. Schur vectorial order

Let us consider the Schur vectorial order on R" which is associated with the
nonnegative convex cone

T

k
S:{yERn :Zy.520.1§k<n,2fyi=0}.

i=1 i=1
Given a,b € R*, a <s b means b — a € S. The nonnegative polar cone of S is
R ={teR": 4 >...2t,}.

Given z € R, we denote by [z] the element of R" whose components are those
of = arranged in nondecreasing order. It turns out that the mapping

K" =R, o 1]
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is S-convex (in fact sublinear; see, for instance, Borwein and Lewis, 2000, p. 26).
The corresponding vectorial Hamilton—Jacobi equation is

Dyu(z,t) + [Dzu(z,t)] =0 in R* xR} (5.2)
u(z,0) = g(z) in R, ’
where g is a Isc proper function defined on R"*. Denoting by [z]; the i*h greatest
component of z, one has for any (z,t) € R" x RS :

UHopt(Z,t) = (g* + Zn:ti[]i)*(m).

=1

In order to explicit the Lax function we need a lemma. We denote by Q the
compact convex set of n X n bistochastic matrices. Let us first recall the Hardy—
Littlewood—Polya Theorem (see Berge, 1959, p. 191):

Va,b€eRE : a<sbe3IQ€Q:a=Qb. (53)
LEMMA 1 For any (y,t) € R* X RS one has:
{t,[y]) = sup{{(z,9) : (z,Q) € R" x Q,z = Qt}.

Proof. Let (z,Q) € R* x Q with z = Qt. There exists a permutation matrix P
such that [z] = Pz and we have [z] = (PQ)t with PQ bistochastic. By (5.3)
it follows that [z] <s t. Since [y] € RZ one has: ([z],[y]) < {t,[y]). Now it is
known (see Borwein and Lewis, 2000, p. 10) that (z,y) < ([z],[y]). Therefore
the inequality > holds in Lemma 1.

Conversely, there is a permutation matrix M such that [y] = My; taking
x = M~ one has (z,y) = (M~t,y) = (t, My) so that the inequality < holds
in Lemma 1. =

As the set UgeoQt is compact and convex, it follows from Lemma 1 that
the Legendre-Fenchel conjugate of the support function ¢ o [] coincides with
the indicator function of this set. The Lax function can be written under the
following form:

PROPOSITION 8 For any (z,t) € R* xRS :

uLax(mvt) = glelgg(z - Qt)

The Lax function is regular; it is therefore the greatest lsc subsolution of
(5.2).
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5.4. Vectorial Hamilton-Jacobi equations in matrix spaces

In this subsection, X is the Euclidian space S, of n x n real symmetric matrices
equipped with the scalar product (M, N}) = trace{MN) and the two cones
T and T coincide with the finite dimensional space R* equipped with the
canonical scalar product (., .). Let us consider the spectral mapping H = ) that
associates with any N € §,, its eigenvalues A(N) = (A1 (N),..., A, (N)) in such
a way that A;(N) > ... > A,(N). Observe that A(S,) = RZ. An important
property of the mapping A = H : §,, — R” is that it is continuous and sublinear
with respect to S (Borwein and Lewis, 2000, pp. 10, 108). In particular

epid = {(N,y) €S, x R" : y — A(N) € §}

is a closed convex cone. Let us consider the underlying Hamilton—Jacobi equa-
tion

Dew(M,t) + AM(Dyu(M,t)) =0 in §, x RY,

w(M,0) = g(M) in S,. (5.4)

where g is a Isc proper function defined on S,,.
The Hopf function associated with {5.4) turns out to be

UHO}:»f(-Mr- t) = (f]* + Z )\i','-i) (AM)
i=1
for any M € 8§, and any t = (t1,. . tn) € R’g
In order to make explicit the Lax function, we need a lemma.

LEMMA 2 For any (M, t) € S, x RY one has
(to A) (M) =sup{(M,N)): (N,Q) €S, x Q,A(N) = Qt}.

Proof. Let (N,Q) € S,, x @ with A(N) = Qf. From (5.3) one has A(N) <g t.
Since A(M) € RY it follows that (A(N),A(M)) < {t, A\(M)). Since (M, N} <
{AMM), A(N)) (see Borwein and Lewis, 2000, pp. 10, for instance) we get the
inequality > in Lemma 2.

Conversely, there exists an orthonormal matrix P such that P"'MP =
diag A(M), where, for a given vector y € R", diag(y) denotes the diagonal
matrix whose entries are y1,...,y,. One has

(M, diag t)) = (P diag \(M)P~*, P diagt P~ 1Y)
= (AMM),t) = (t o A)(M).

The proof of the lemma is thevefore achieved. H

As the set {N € 8, : 3Q € Q,A(N) = Qt} is closed and convex, it follows
from Lemma 2 that the Legendre-Fenchel conjugate of the support function to )
coincides with the indicator function of this set, so that the Lax function can
be expressed as follows.
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PROPOSITION 9 V(M,t) € S, X RS,
uLax(M,t) = inf{g(M — N) : (N, Q) € 8, x Q,A(N) = Qt}.
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