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In this paper, we prove the existence and uniqueness of a “steady” spiral moving
with forced mean curvature motion. This spiral has a stationary shape and rotates
with constant angular velocity. Under appropriate conditions on the initial data,
we also show the long time convergence (up to some subsequence in time) of the
solution of the Cauchy problem to the steady state. This result is based on a new
Liouville result which is of independent interest.

Keywords Liouville theorem; Long time convergence; Mean curvature motion;
Motion of interfaces; Spirals; Steady state; Viscosity solutions.

AMS Subject Classification 35K55; 35K65; 35A05; 35D40.

1. Introduction

In this paper we are interested in curves in R? which are half-lines attached at the
origin. These lines are assumed to move with normal velocity

V,=1+x (L.1)

where x is the curvature of the line. We assume that these curves I, can be
parametrized in polar coordinates as follows

I, ={(rcos0, rsin0), suchthat r>0, 0=-U(,r)}.
On the one hand, the Geometric Law (1.1) holds true if U satisfies
U, = (1 + KU)|VU|

Received April 8, 2014; Accepted September 19, 2014
Address correspondence to C. Imbert, CNRS, UMR 7580, Université Paris-Est Créteil,
61 avenue du Général de Gaulle 94 010 Créteil, France; E-mail: cyril.imbert@u-pec.fr

1137



Downloaded by [SISSA], [C I] at 00:50 12 March 2015

1138 Forcadel et al.

On the other hand, it is known (see for instance [9]) that the curvature of the
parametrized curve I, has the following form

(1.2)

2
ky(t,r) =U, < 2+ (rU) ) + U

1+ UYL+ (U)»)E

Hence, the function U has to satisfy the following quasi-linear parabolic equation
in non-divergence form for (¢, r) € (0, +00) x (0, +00):

2+ r2U? rU
U =,/1 202+ U L z 1.3
e et r<l+r2Ur2)+l+r2U,2 (1.3)

supplemented with the following initial condition for r € (0, +o0)

U0, r) = Uy (7). (1.4)

1.1. Main Results

In [9], we were able to prove an existence and uniqueness result for equation (1.3)-
(1.4). We improve it by proving in particular that solutions are regular up to the
boundary r = 0.

Theorem 1.1 (Existence and uniqueness for the Cauchy problem). Assume that
U, € W,zo’f(’(O, ~+00) is globally Lipschitz continuous and satisfies

(Uy), € Wh=(0, +00) or Ky, € L7(0, +00)
and that there exists a radius r, > 0 such that
|1 +KU0| <Cr for 0<r<r,.

Then there exists a globally Lipschitz continuous (in space and time) solution U such
that

144,

U € €757 3((0, 4+00) x [0, +00)) N C*((0, +00) x (0, +0)).

Moreover, for every 6 >0, R > 0, there exists a constant C = C(, R) such that for
every T >0 >0,

”U - U(T7 O)” 1241 =C
CLIGV 3

([T, T+0]x[0,R]) —

Such a solution is unique in the class of continuous viscosity solutions of (1.3)-(1.4).
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Remark 1.2. In view of (1.2) and (1.3), the regularity of U stated in the previous
theorem implies in particular that

Ky+1=0 at r=0 (1.5)
holds for ¢ > 0.

Remark 1.3. The assumption that U, is globally Lipschitz was missing in the
statement of Theorem 1.7 in [9]. We will recall below (see Theorem 2.1) the corrected
version of this result.

Our second main result is about the existence of a spiral with stationary shape
and rotating at constant speed.

Theorem 1.4 (A steady state). There exists a constant /. € R and a globally Lipschitz
function continuous ® in [0, +00), satisfying

A>0 and ®, <0 on [0,+00)

such that U(t, r) = At + ®(r) is a solution of (1.3) in R x (0, +00). Moreover such a
A is unique and such a function ® is unique up to addition of a constant. Moreover, the
following properties hold true:

1) we have

<4<

P
N —

i) ® € C*(0, +00) N C23 ([0, +00)) satisfies for all r € [0, +00)

IA

®, < —, (1.6)

r

| —

0<14+kKy <ir (1.7)
Moreover ®, and the curvature k4, are non-decreasing and
1 )
P.(0)=—5. P(to0)=—4  Ke(0) =—1 xp(+o0) =0.

iii) There exist some constants a € R and C > 0, such that ® satisfies for all r €
[0, +o0)

|P(r) + Ar+ 2In(1 4+ 1) —a| <

147

Remark 1.5. Notice that the value of the angular velocity 4 have been estimated to
be 0.315 by approximation in [5], and computed to be 0.330958961 by a shooting
method in [28].

Our third main result is concerned with the large time behavior of solutions of
the Cauchy problem for initial data that are “reasonably close” to the steady state.
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Theorem 1.6 (Long time convergence). Under assumptions of Theorem 1.1, if the
initial data Uy further satisfies

|Up— @< C (1.8)
and
(W), <®, <—1<0, (1.9)

where (A, @) are given in Theorem 1.4, then for any sequence t, — +oo, there exists a
subsequence (still denoted by t,) and a constant a € R such that

Uit+t,, r)— (At +1,) + P(r) — a locally uniformly in R x [0, +00).

Remark 1.7. The fact that convergence only happens along a subsequence of times
is expected. Indeed a similar fact happens already for the linear heat equation on
the real line. It is possible to cook up an initial data which stays between 0 and 1
such that the solution does not converges as times goes to infinity, but such that
convergence to a constant (locally uniformly) still happens for subsequences in time
(see in particular [7, Lemma 8.6]). This happens here because we are working on
the whole plane. On the contrary, when we work on the (compact) annulus (like in
[10]), there is a full convergence in time without taking a subsequence in time.

The proof of Theorem 1.6 is based on the following Liouville result of
independent interest.

Theorem 1.8 (Liouville result). Let U(t, r) be a globally Lipschitz continuous function
(in space and time) in R x [0, 400). We assume that U is a global solution of (1.3) in
R x (0, +00) and that there exists a constant C > 0 such that the following holds:

|U(t,r) — At — ®(r)] < C on R x [0, 4+00) (1.10)

where (1, ®) is given by Theorem 1.4. We also assume that there exists some 6 > 0 such
that

U <—-0<0 in R x]J[0,+00). (1.11)
Then
Uit ry=it+d(r)+a
for some constant a € R.

1.2. Review of the Literature

Spirals appear in several applications. Our main motivation comes from continuum
mechanics. In a two dimensional space, the seminal paper of Burton et al. [5]
studies the growth of crystals with vapor. When a screw dislocation line reaches the
boundary of the material, atoms are adsorbed on the surface in such a way that a
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spiral is generated; moreover, under appropriate physical assumptions, these authors
prove that the geometric law governing the dynamics of the growth of the spiral is
precisely given by (1.1). We mention that there is an extensive literature in physics
dealing with crystal growth in spiral patterns (see for instance [31, 32]). We also want
to point out that motion of spirals appear in other applications like in the modeling
of the Belousov-Zhabotinsky reagent [24]. To model the appearence of such shapes,
the reagent is modeled in [17] by a system of semi-linear parabolic equations; so-
called spiral wave fronts satisfying the geometric law (1.1) can be formally derived.
The interested reader is also referred to e.g. [14, 22, 23].

There exist different mathematical approaches to describe the motion of spirals.
As far as we know, it appeared first in geometry in [1]. It was also used in order to
study singularity formation [2, 3]. Other approaches have been used; for instance,
a phase-field approach was proposed in [16] and the reader is also referred to
[8, 26, 27]. In [10], spirals moving in (compact) annuli with homogeneous Neumann
boundary condition are constructed. From a technical point of view, the classical
parabolic theory is used to construct smooth solutions of the associated partial
differential equation; in particular, gradient estimates are derived. We point out that
in [10], the geometric law is anisotropic, and is thus more general than (1.1). In
[13, 29, 30, 33], the geometric flow is studied by using the level-set approach. As in
[10], the authors of [29, 30] consider spirals that typically move inside a (compact)
annulus and reaches the boundary perpendicularly.

Concerning the existence of “steady” spirals (in the case where the exterior
stress is zero), we refer to [15] where the construction is done by studying an
ordinary differential equation and to [6] where the authors consider a two-point free
boundary problem for the curvature flow equation. We also refer to [10] where they
construct a steady state on an annulus using classical parabolic theory. In [28], a
numerical computation of the angular velocity A of the spirals is done. The authors
find that the angular velocity is approximately 0.330958961 (recall that we find that
1

1
1 <A< 3).

1.3. Organization of the Article

In Section 4.1, we prove that the solution has a certain smoothness up to the
boundary r = 0, namely Theorem 1.1. In Section 3, we construct the steady state,
first on an annulus and then on the whole space. In Section 4, we prove some
asymptotics of any profile, and then deduce the uniqueness of the profile (and
of its angular velocity A) as a consequence of the asymptotics. In Section 5, we
provide some additional qualitative properties of the profile solution, including
monotonicity of its gradient and of its curvature. We also give a bound from below
on A. In Section 6, we prove Liouville theorem 1.8. In Section 7, we prove the
long time convergence of the solution to the steady state (up to addition of a
constant), namely Theorem 1.6. This result follows from Liouville Theorem and
a gradient bound on the solution (Proposition 7.1) that is proven in Section 7.
Finally, Section 7 is an appendix where we recall standard materials, like strong
maximum principle, Hopf lemma, Interior Schauder estimates. We also prove a
technical lemma (Lemma A.4) which is used in Section 4.1, and also prove a result of
independent interest which is not used in the rest of the paper: the equation satisfied
by the curvature of the graph of the solution of the evolution problem.
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Notation. For a real number a € R, at denotes max(a,0) and «~ denotes
max(—a, 0). The ball of radius r centered at x are denoted B(x, r). If x =0, we
simply write B, .

2. Regular Solutions Up to the Origin

This section is devoted to the proof of Theorem 1.1. This theorem improves [9,
Theorem 1.7] by establishing regularity of solutions up to the origin. As we pointed
out previously, the assumption that U, is globally Lipschitz was missing in the
statement of [9, Theorem 1.7]. This is the reason why we first state a corrected
version of this theorem.

Theorem 2.1 (Existence and uniqueness of smooth solutions for r > 0, [9]).

Assume that Uy € W:>(0, +o0) is globally Lipschitz continuous and satisfies
(Uy), € Wh=(0, +0) or Ky, € L*(0, +00)

and that there exists a radius ry > 0 such that

1+ xy,| < Cr for 0<r<r,.

Then there exists a unique viscosity solution U of (1.3),(1.4) which is globally Lipschitz
in space and time. Moreover this solution U belongs to C*((0, +00) x (0, 400)).

In view of this result, proving Theorem 1.1 amounts to prove the following
proposition.

Proposition 2.2 (Space-time Lipschitz implies uniform regularity up to r = 0).
Assume that U is a globally Lipschitz continuous (in space and time) solution of
(1.3) in (0, 400) x (0, +00). Then U(t, r) belongs to C,I,j%’H%((O, +o0) X [0, +00)).
Moreover, for every § >0, R > 0, there exists a constant C = C(J, R) such that we
have the following uniform bound for every T > 0 > 0:

<cC @2.1)

U-UT,0 14l
IV = OO ot o

Before proving this proposition, we get some useful a priori estimates on the
solution.

Lemma 2.3 (A priori estimates). Assume that U is a globally Lipschitz continuous (in
space and time) solution of (1.3) in (0, +o00) x (0, 4+00), with Lipschitz constant L > 0.
Then U € C=((0, +00) x (0, +00)) and there exists a constant C = C(L) > 0 such that
for every (t, r) € (0, 00) x (0, 00), we have

1
Ut + 51 < Cr and U, (1. 9] < C(1+ 7). 2.2)
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Proof. We recall that we already proved in [9, Theorem 1.7] that U e
C=((0, 400) x (0, +0)). We also recall that U, and U, are bounded, and that U
solves

rU, = (1 + xy),/1 + r2U>.
We deduce that
11 +xy| <Cr (2.3)
for some constant C. Remarking that
1420, + U, = (1 + x,)(1 + PU%)} — P2U° — ((1 T 1) :

and using the bound on U, and (2.3), we deduce that

11420 .4+ rU,| < C(r+r*+r +r%) 2.4)

< C(r+rY.

For fixed ¢ > 0, we set y(r) = U(t, r) + r/2 which satisfies (r*y,), = r(1 +2U, +
rU,,), and deduce that

|(r*y,),| = C(* + 7).
This implies |r2y,| < C(r* + r®) and we finally get
U+ 31 = 0,1 = Cr 4 7). @)
Injecting this estimate in (2.4), we finally get for all r € (0, +0), ¢ € (0, +0o0)
U, (t, ] < C(1 +1). (2.6)

Because U, and U, are bounded, we can use (1.3) to get for large r that |U,| <
Cr?. We can then improve (2.5) and (2.6) to get (2.2). This ends the proof of the
lemma. O

Proof of Proposition 2.2. The idea of the proof is to see U as a radial solution of
a partial differential equation in three dimensions and to use the interior regularity
theory in 3D in order to deduce the boundary regularity up to r = 0.

More precisely, we set

X
V(t, X) := U(t, | X]) + % for X € R?,

where we see that V is smooth for X # 0. Here we have to add the term % in

the definition of V, in order to cancel the term VV(.,0). Indeed, remember that
U.(t,0) = —%. If we do not add that term, this would make appear a bad term like
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% in the coefficient of the PDE satisfied by V which would not allow us to control
the regularity of the solution up to X = 0.

Step 1: Estimate on D’V. We make the following pointwise computation of the
second derivatives

X; 1 X,
Dv=D.(DW=D.| Lty + =L
A -’<|X| ’+2|X|>

v X% (] & XX,
TP T2 \x| xP )

For R > 0 fixed and 0 < r < R, we deduce from Lemma 2.3 that there exists a
constant C, > 0 such that

1
|Urr|§CR’ |Ur+§|§rcR

This implies that D*V € L*((0, +-00) x (Bg \ {0})).
Moreover for all ¢ € C((0, T) x Bg), we have in the distribution sense

_<D]2'iv’ ¢) = lim (D;V)(D;$)

£=0J(0,7)x(Bg\B,)

=nm{/ ~(D3V+ | ¢<n-ei>DjV}
e=0 | 0, 1)x(Bs\B,) ! (0.7)x 2B,

where 7 is the outward normal to B;\B, on the boundary 0B,, and ¢, is a unit vector
of the canonical basis of IR?. Since VV is bounded, we recover that

o —u XN (e D) (XX
X Co2)\Ix o IXP

in the distribution sense on (0, +o00) x B,. This implies that the distribution D*V
satisfies D*V € L®((0, +o0) x Bp).

Step 2: Estimate on VV. Moreover, since V,, V, € L*((0, +00) x By), we get that for
every 0 > 0 and for every 1 < p < +oo, there exists a constant C = C(6, R, p) > 0
such that for every T > 9, we have

IV = VAT, 0)llwrr—. 45y < C:

Using parabolic Sobolev Embedding in parabolic Holder spaces (see [19,
Lemma 3.3]), we get, for every 0 < o < 1 and a suitable constant C = C(d, R, o) > 0,
that

IV = VL0 = <C (2.7)

¥: ((T—8,T+0)xBg)

which implies that

Vvl (2.8)

2, <
Cx (T—3,T+3)xBg) —
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Step 3: Equation satisfied by V. A computation gives that V is solution (at least in
the distributional sense) of

V, = A(X, VW)AV 4+ B(X, VV) for (t,x) € (0,T) x Bg(0)

where
A(X, p) !
ap = 2
X
1+(X-p—§)
X-p) ¢ q
B(X, p) = + 1 g
P =172 T x oW

withq:Xop—%and

6@ = o (Ve 7 =5 (11%)) =1+ o),

q
Let us set

X

X=X

with o = 1/3.

In particular, we can easily check that the map X — X is in C* (see Lemma A.4).
Then we can write

(x:r- )

1+¢2

X

2
e | 1X)
+|X|<X~p— 2) Gy(q) with g=X-p—

B(X,p) = (X p) 5

Therefore on the set {|X| <R, |p| < R}, we see that the function B is Lipschitz
continuous both in p and in X, i.e. satisfies

IB(X', p') = B(X, p)| < C (I1X' = X[+ |p' = pl).
Using Lemma A .4, this implies (increasing Cj if necessary) that

|B(X", p') = B(X, p)| = Cp (IX" = X|"+|p" = pI)
i.e. B is locally Lipschitz in p and C* in X. Similarly

|A(X', p') = A(X, p)| = Cr (IX" = X[+ [p" — pl)

i.e. A is locally Lipschitz in p and X.
Denoting by

A1, X) = A(X, VV(t, X)) and B(t, X) = B(X, VV(t, X)),
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and using (2.8) for the regularity of VV, we get that there exists a constant C > 0
such that

I|A]| 11 [|1B]| 11 <C. (2.9)

Cf};j((T—é,TjLé)xBR)’ Co%3 (T—8.T+3)xBg)
Because V(z, x) := V(t, x) — V(T 0) solves
V,=AAV +B in (T —0,T +0) x By,

we can use interior Schauder estimates (see Proposition A.2 in the appendix), and
deduce that

V —WT,0 L+l
|| ( )||c§r§'l+é([T,T+5]><BR/Z)

<c { 1] V- 0>|Lm<<T_5,T+MR)} <c

Co2 ((T—5,T+0)xBg)

where we have used (2.9) and (2.7) for the last inequality. This implies in particular
(2.1) (changing R/2 in R), and ends the proof of the proposition. O

3. Existence of a Steady State

The main result of this section is the following proposition.

Propostion 3.1 (Existence of a steady state). There exists a constant 1. >0 and a
Sunction ® € C*(0, +o0), satisfying

—-1/2<®, <0 on (0,+00) (3.1
such that U(t, r) = At + ®(r) is a solution of (1.3) on R x (0, 4+o0).

In a first subsection, we build a solution on an annulus R~! < r < R, and in a
second subsection we pass to the limit R — +o0.

3.1. Steady State in a Annulus

In the following, we will frequently work in log coordinates with the function
u(t, x) = U(t, ¢*). The function U solves (1.3) if and only if u solves the following
equation

u, = F(x,uy, uy) i=e 1+ u+e > u, + o2 e (3.2)

See for instance [9].
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For R > 1, we consider the annulus R~' <r <R, we study the following
problem with Neumann boundary condition on the boundary of the annulus:

24 r2U? rU, »
rU,=,/1+r?U*+ U, (1 +r2U,2> + T 0 on (0,+o0) x (R™', R),

U =0 on (0,+o0) x {R™', R},
(3.3)

with initial data
U, r) = Uy(r) forall re[R',R] (3.4)
Then we have the following result.

Lemma 3.2 (The Cauchy problem in an annulus). Let R>1 and o€ (0,1) and
assume that Uy € C***([R™", R]) and that U, satisfies

[ r =000 .
-M < (Uy),(r) <0 forall re (R R). '

Then there exists a unique solution U € C'*32+%([0, +-00) x [R™", R]) of (3.3), (3.4).
Moreover U satisfies

—max(1/2, M) < U,(t,r) <0 forall (t,r) € (0,+00) x (R"',R).  (3.6)

Proof of Lemma 3.2. The proof proceeds in several steps.

Step 1: Existence of a smooth solution As it is explained in [10], the classical theory
allows to construct a unique solution U e C?>**!+3(]0, 4+o00) x [R™!, R]) of (3.3).
Moreover, from the classical parabolic regularity theory, we can bootstrap and get
that U € C*((0, 4o0) x [R™", R]).

Step 2: Gradient bound from above. We first recall that u(z, x) = U(z, ¢*) solves (3.2).
Let

w=1u,

Then by derivation of (3.2), we easily get that w solves in (0, +00) x (—a, a) (with
a=1nR),

_ _ ww _ _
w, = —e V1 + w4 et —Ze —2e F w4 e P w,

g Wy e‘zﬁ 2w’ ) 7 (3.7)
1+ w? 1+w? (14 w?)?
and
w(t, £a) =0 forall 1 e (0,400)
and

w(0, x) = " (Uy),(e*) for all x €[—a,al. (3.8)
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Notice that w = 0 is a supersolution of (3.7), (3.8), where we use (3.5) to check the
initial condition inequality. Therefore the classical comparison principle implies that

w<0.
Step 3: Gradient bound from below. We now define the function
z(t, x) = e w(t, x) = U,(¢, €).

It is easy to check that z satisfies

w 2w3 + “ox Zxx
e o —
1+ w?

1
22X - _ =3
7z, =—e ( 1+w2+z> e (1+w2+(1+w2)2

Because we already know that z < 0, we deduce that:

ZXX
ez, > —g(x,2) + i 0(z,)

with
(x.2) 1 z
X,)=—+7+ ——.
8 Tt e 1 + 272

Let us set
h(y) =7 +z+7z.
Then we have

g(x,z) = h(y) with y= e (0, 1].

1

(3.9)

+ 0(z,)-
(3.10)

(3.11)

Remark that the maximum of k(y) is reached at y = —ziz if z < 0. Therefore

1 1 1
sup h()) <h|——)=z——<0 if z<—=.
ve<0P11 W ( 22) 4 2

Therefore

1
glx,z) =0 if z< —3

Remark now that z = —max(1/2, M) is then a subsolution of the equation with
equality in (3.11) (with zero boundary conditions). This implies that z is a
subsolution of (3.10) with zero boundary condition. Again, the comparison principle

for z implies that

—max(1/2, M) < z.

(3.12)

Finally (3.12) and (3.9) implies (3.6) which ends the proof of the proposition. O
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Lemma 3.3 (Periodic solution in an annulus). For R > 1, there exists a solution Uy
of (3.3) in (0, +00) x (R™', R) such that

Up(t+ Tg, 1) = Ug(t, 1) + 27 (3.13)
for some Ty > 0.

Proof of Lemma 3.3. Let I denote the interval (R™!, R). In view of [10, Remark 2.1]
and the discussion preceding [10, Proposition 4.3], we know that for all U, € C***(I)
for some a € (0, 1) such that (U,), < 0, there exists a solution U, of (3.3) in (0, co) x
I. Moreover, for all t > 0, we have Ug(t,-) € C*(I). We then choose U, € C***(I)
satisfying (3.5) with M =1/2 and we denote by U, the corresponding solution.
Thanks to Lemma 3.2, we know that

—1/2 < (Ug),(t, 1) < 0.

Moreover, by [10, Proposition 4.3], there exists a period T, > 0 and U, such that
(3.13) holds true. This achieves the proof of Lemma 3.3. |

Lemma 3.4 (Steady state in an annulus). For R > 1, there exists A, > 0 and ®, €
C>([R™", R)) satisfying

—1/2 < (®g), <0 in [R™',R]
such that Azt + $(7) is a solution of (3.3).
Proof of Lemma 3.4. Remark first (with 1, = %) that
v(t, r) = Ug(t, 1) — Agt (3.14)

is Tg-periodic with respect to the time variable. We want to prove that it is constant.
Consider &, 6 > 0 and define

USo(t,r) = Ug(t + 0, 7) — €.

We have US” < UY and since U, is Lipschitz continuous, Ug® < Un" for & small
enough. We then define for ¢ > 0

9, =sup{d > 0: U’ < Ur’ Vo €[0,0)} > 0.

Since v is periodic, we deduce that §, < 4+oc0. Remark that U and Up* are both
solutions of (3.3) and the optimality of J, implies that

max {US% — U} =0.
t€[0,Tg],rel

By Lemma A.2 and the Neumann boundary condition, we deduce that the
maximum is attained for some inner point r, € I. Since the function (inside the
maximum) is Tp-periodic with respect to the time variable, the strong maximum
principle (Theorem A.1) written for the difference function U,‘;’bE — Uy implies that
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U;"s” = Up" (note that w = U;’(SS — Up" solves a linear locally uniformly parabolic
equation and the coefficient of the linear equation for w are enough regular to apply
the strong maximum principle, see the book by Gilbarg-Trudinger [12] for more
details on this linearized argument). Then for all kK € N, we have

Up(t + k0., r) = Ug(t, r) + ke.

&
TxTR’

The fact that U, — 44T is T,- periodic implies in the limit K — +oo that % =
ie., Ap = bi Hence, for every ¢ > 0, we have

€
Up(t+ = r) = Ug(t, r) + &.
‘R

This implies that v defined in (3.14) is constant. The proof of Lemma 3.4 is now
complete. a

3.2. Steady State in the Plane

In this subsection, we want to take the limit R — 0 to recover a steady state in the
plane. To this end, we first need the following estimate.

Lemnla 3.5 (Bound on Ag). There exists yi > 0 such that for all R > 2, we have 0 <
Ag < A

Proof of Lemma 3.5. We already know that 1, > 0. In order to exhibit 7> 0 with
the desired property, we are going to construct a super-solution of (1.3) of the type
u(t, r) = At + W(r).

Let 0 = —y(r) describe the circle (in polar coordinates) of equation 1+ x =0
which is tangent from above to the horizontal axis. From an analytical point of
view, the reader can check that the right half circle (i.e. for 0 € [0, n/2] and 0 < r <
2) corresponds to

. r
= —arcsin ( =
/() (2)
which satisfies F(r,7,,7,,) = 0 for 0 < r < 2, where
— 1 2+ rz,yz ry
F b ‘7'\rr = 1 2y2 Nr 5 = °
(7> 90 ) r{V +ry’+/<l+r2y3>+l+r27)%

We choose ¥ as follows

W(r) = {(r)y(r)

1
where { is a smooth cut-off function which is equal to 1 in [0, 5] and equal to zero

for r > 1. .
Now we choose /A such that

i>supF(r, ¥, ¥.)= sup F(r, ¥, ¥,

r>0 rel1/2,1]
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We also have for R > 2:
Y(R)=0, and V(R =y.(R") <0.

This implies that it + W(r) is a supersolution of (3.3), and the comparison principle
with Azt + @, (r) implies (for large times) that 1, < A which ends the proof of the
lemma. O

We now want to pass to the limit as R — +oo and prove Proposition 3.1.

Proof of Proposition 3.1. Because the functions A,¢ + ®,(r) are uniformly Lipschitz
continuous in space and time independently on R > 2, we can pass to the limit
R — oo. We call the limit Ar + ®(r), which is then a viscosity solution of (1.3) and
satisfies:

~1/2<®,<0 and i>1>0.

Because Ar+ ®(r) is globally Lipschitz continuous in space and time, we can
apply Lemma 2.3 and deduce that ® € C*(0, +0c0). This ends the proof of the
proposition. |

4. Asymptotics of the Steady State and Uniqueness

The main result of this section is the following proposition.

Proposition 4.1 (Asymptotics of the steady state and uniqueness). Assume that
At + ®(r) is a globally Lipschitz continuous solution of (1.3) in R x (0, +00) with
D e C*(0, +00) satisfying

>0 and ®, <0. 4.1)

Then such a A is unique and such a ® is unique up to an additive constant. Moreover
we have A > 0 and there exist constants a € R and C > 0 such that

C
|®(r) + Ar+2In(14+r) —a| < T (4.2)

We will do the proof of Proposition 4.1 using several lemmas and propositions.

4.1. Positivity of the Angular Velocity
We first prove that A is positive.

Lemma 4.2 (Positivity of 1). Under the assumptions of Proposition 4.1, we have
A>0.

Proof of Lemma 4.2. Assume by contradiction that A = 0. We look for a barrier
solution that we will compare to ®. To this end, let us consider the circle in R? of
radius 1 (given by the equation 1+ x = 0) and of center (0, —R) for some R > 1
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in the Cartesian coordinates X = (x;, x,). We can parametrize in polar coordinates,
the right half circle as follows,

0 = —yg(r) :=arcsin (f(r)) for R—1<r<R+1
with

P+ R:—1

1) ="

which satisfies f(R — 1) = 1 = f(R+ 1), and f'(r) = 2= with f/(R £ 1) # 0.

2Rr?
This implies in particular that the graph of 7, has vertical tangents at r = R £ 1.

Because y; is a stationary solution of (1.3) on (R — 1, R + 1), we can compare it on
(R —1,R+1) to the stationary solution ® when A = 0. We consider

min _ (P0) = 7x(1).

re[R—1,R+1
Since lim,_, ;_; y5(r) = +o0 and lim, 5., y3(r) = —oc and using the fact that ¢ is
Lipschitz continuous, we get that (¢ —yz)(R—1) and (¢ — y;)(R + 1) are local
maximum. Hence, the minimum cannot be achieved at r = R+ 1 and is therefore
reached at some interior point. The strong minimum principle then implies that

®(r) — yx(r) is constant in (R — 1, R+ 1).

By continuity, this is still true at » = R & 1 which is again impossible. Finally, we
conclude that 1 # 0 and then /1 > 0. This ends the proof of the lemma. |

4.2. Asymptotics

In the following proposition, the asymptotics of the profile is stated in Log
coordinates. It also contains the asymptotics of the derivative of the profile which
will be used later.

Proposition 4.3 (Asymptotics near r = +o0). Under the assumptions of Proposition
4.1, the function ¢(x) = D(e*) satisfies

|o(x) + 2e* + Ax —a| < Ce™ for x > x, 4.3)
and

o (x)=—le* — 1+ 0(e™) for x> x (4.4)
for some constants a, x; € R and C > 0.

Recalling (3.2), we see that ¢ is a solution of the following second order ODE

i=e 1+ @2 +e o, + e P for xeR. 4.5)
1+ ¢2

X
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As we shall see it, Proposition 4.3 is a consequence of the study of the ODE
satisfied by v := ¢, < 0, which is the following

v, = f(v,x) for xeR (4.6)
where
fw, x) = (1 +w)l(w, x) with {(w,x) =4 — e V1 +w? — e >u.
We first need the following result.
Lemma 4.4 (Elementary estimates). Let A > 0. Then there exists a real number x, >

0 such that for x > x,, the equation f(w, x) =0 has a single root w = vy(x) which is
non-positive. This function satisfies for x > x,

1
U(x) = —2e" — A+ (ﬁ - ﬂv> + 0(e™), 4.7)
() (%) = —4e" + 0(1) < 0. (4.8)
Moreover we have
0 2L
L2 T for w () and x = x, 49)
ow 2
and for all w,,y, € R, we have
X Z Ve Z X = f(w, x) > ¢ min({(w,, y,), 1/2) > 0 (4.10)
vO(y*)<w*§LU§O ’ - *0 Vx)o . .

Proof of Lemma 4.4. The proof proceeds in several steps.

Step 1: Definition of v,. Remark that if f(w, x) =0, then w solves the following
second order polynomial equation

l—e ™M+ 2w+ 1 -1 =0. 4.11
(

For some x large enough, there is only one non-positive solution which is given by
the following formula

—A =22+ (1 — e ) (22— 1)

UO(‘x) = 1 _ e,zx
—A = /le"\/l + (%e“‘x - )Vize—zx)
- ] —e 2

1
— ) — ) 1 P § 1 —2x —2x
( A— e < 2/126 ))( +e )—i—O(e ),

which gives (4.7).



Downloaded by [SISSA], [C I] at 00:50 12 March 2015

1154 Forcadel et al.

In order to recover (4.8), we take the x-derivative of equation (4.11) satisfied by
v, and we get

(v),(Vo(1 = ™) + ) + (vy)’e > — 12> = 0.
This implies (using (4.7) in the second equality)

—(vg)?e > + 22e¥ 22 4+ 0(1)
(vO)x(x) = —2x = ) oX ’
vo(1 —e %)+ 4 —lex + O(1)

which gives (4.8).

Step 2: Estimate on ;—I) Let us now compute

a—f(w, x) = 2we* {(w, x) + > (1 + wz)%(w, x)
ow ow

and
we™"

— ¥ = g(w, X).
NiERT gw. %)

Remark also that, increasing x, if necessary, we have for x > x, both

%(w, xX)=— 4.12)
ow

vo(x) < —1

and

%(w, x) > %e’x for w(x) < vy(x) < —1.

ow
But {(vy(x), x) = 0, and then the sign of % implies
{(w(x),x) =0 for w(x) < vy(x)
and
L2 2 (4w o 0.

Again, increasing x, if necessary, we can assume that v,(x) < —Ae* for x > x, and
then

af /12 3x

—(w, x) > ?e

for w(x) < yy(x).
ow

Step 3: Estimate on f. Recall that the function g appears in (4.12). Remark that for
x > 0 we have g(w, x) = 0 with w < 0 if and only if

e
m—.wox.

w(x) = —
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Moreover we can then deduce that

gw,x) >0 if w=<wy(x),

glw,x) <0 if wy(x) <w=<0.
Because of (4.12), we deduce that, increasing x, if necessary,
wy(¥) fw=<0= {(w,x) >{0,x) =A—e">1/2 if x> x,

and then using the definition of f and a bound from below of {(w, x) for w € [w,, 0],
we get

vy(x) < w, <w < 0= f(w, x) > ¥ min({(w,, x), 1/2) >0 if x> x,

Let us notice that for w < 0, we have up to increase x, if necessary,

0
6—C(w, X)=eVIi+uw+2eFw>0 if x> x,
x
and then this implies (4.10). This ends the proof of the lemma. |
We next prove the following estimate.

Lemma 4.5 (Asymptotics for v = ¢,). For any p > 0, there exists a real number
X, > x, such that v = @, satisfies

09(x) = 0(x) = vy(x) —pe ¥ for xzx
where v, and x, are given by Lemma 4.4.
Proof of Lemma 4.5. Recall that A > 0 and define
v(x) 1= vy(x) — ,ue’%x.

The proof proceeds in several steps.

Step 1: v is a super-solution. Remark that, thanks to (4.8),

_ 3 .

vx(x) = (Uo)x(x) + El'l’e M=l + 0(1)
We also remark that there exists w(x) € [v(x), vy(x)] such that

J@(x), x) = flvy(x), x) + S—f}(w(X), ) (V(x) = vy(x))

}'2 3x (7
< 36 (v(x) — vy(x)) (4.13)
2 s
< —pert

2
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where we used (4.9) in the second line. Therefore there exists x; > x, such that
v.(x) = f(v(x), x) for x> x,.

Step 2: Comparison with v. Assume by contradiction that v(x,) < v(x,) for some
x, > x;. Then, from the comparison principle, we deduce that

v(x) <v(x) forall x>x

%

Then we have

2
0,0 = F0(0). %) < F0(). %) <~ b (@.14)

where we have used the fact that v < v, the monotonicity of f(w, x) in w (see (4.9))
and estimate (4.13). Estimate (4.14) now gives a contradiction with the fact that
®,(¢*) = e *v(x) is bounded.

Step 3: v, is a sub-solution. The inequality (v,),(x) <0 = f(vy(x), x) for x > x,
follows from (4.8).

Step 4: Comparison with v,. We argue by contradiction. Let us assume that there
exists a point y, > x, such that v(y,) > v,(y,). Then from (4.10), we deduce that
there exists a constant o > 0 such that
flw,x) >a>0 for welv(y,),0] and x >y,.
But recall that
v, (x) = flv(x), x).
This implies that
v.(x) >a for x>y, while v(x) <0.
Therefore we conclude (using the continuity of f) that there exists a point x, such
that v(x,) > 0, which is impossible because v = ¢, < 0. We thus get the desired
contradiction. This ends the proof of the lemma. a
Proof of Proposition 4.3. 1t follows from Lemma 4.5 and (4.7). a

4.3. Uniqueness

Proposition 4.6 (Uniqueness). Under the assumptions of Proposition 4.1, J. is unique
and ® is unique up to addition of constants.

In order to prove Proposition 4.6, we will need the following space Liouville
result which will be proven later in Section 6 as an independent result.
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Theorem 4.7 (Space Liouville theorem). Let ®' for i=1,2 be two C*([0, +))
functions such that for some J. > 0, the functions it + ®'(r) are solutions of (1.3) in
R x (0, +00) for i = 1, 2. Assume also that we have for i = 1,2 and r > 0:

. C
‘CID’(r) +r+2In(1 + r)’ < — (4.15)
1+r
and
. C

0o} A< —.

@)+ 2] = 70
Then ®' = ®%.

Proof of Proposition 4.6. We already know that & satisfies (4.2). From
Proposition 2.2, we deduce that ® € C*([0, +00)).

Uniqueness of /. We argue by contradiction by assuming that there exist (®', A!)
and (@2, %) two solutions such that

/’{1 < )L,z.
Because of (4.2), we deduce that there exists a constant K such that
®'(r) > ®*(r) =K for r>0.

From the comparison principle for (1.3) (see Theorem 1.3 in [9], with Lipschitz
continuous initial data U, = ®'), we deduce

M+ ®'(r) = 2t +D*(r) — K forall (t,7) € (0, 4+00) x (0, +00)

which implies (for large times) that A' > /2. This is the desired contradiction.

Uniqueness of ® (up to an additive constant). We now consider two profiles ®', ®?
with the same 4 = A' = A%, Recall that for i = 1, 2, each function @' satisfies (4.2)
for some constant a’. Adding different constants to those two functions if necessary,
we can assume that a! = a> = a =0, i.e.

i C
|[®'(r)+Ar+Aln(l +r)| < ——, for i=1,2.
1+r

We then apply Theorem 4.7 to conclude that ®' = &>, The proof is now
complete. |

Proof of Proposition 4.1. It follows from Lemma 4.2 and Propositions 4.3
and 4.6. O



Downloaded by [SISSA], [C I] at 00:50 12 March 2015

1158 Forcadel et al.

5. Further Properties of the Steady State

5.1. Monotonicity Properties

Proposition 5.1 (Monotonicity of the gradient of the profile). Let ® be the profile

given in Proposition 4.1. Then we have

®. >0 in [0,+00)

N =

and
1
D,(0) = ~3 and ®,(+o00) =—1 < 0.
Proof of Proposition 5.1. For ¢(x) = ®(e*), we recall from (3.10) that

2(x) = e (x) = @, ()

satisfies with w = ¢,:

0=z, =—e

1
—2x _ 3
(m“) ‘ <1+w2+<1+w2>2

w 2w’ RS Zox
g2 _lxx
1 4+ w?

(5.1)

(5.2)

(5.3)

+ 0(z,).

Step 1: Case of a local minimum of z. Assume that z has a local minimum at x, with

value z;, = z(x,). Then z,,.(x,) > 0 and z,(x,) = 0 which implies,

% 2e*z;

+ 20+
0 1 + €2x028 (1 + erOZg)z -

1
/1 + e2xoz(2)

Setting

€ (0,1],

1
we see that this means
7+ 20+ 720+ 295 (1/7 = 1) = 0
ie.
7+ zo(1 + 3797 = 29%) > 0.

Let
g() =1+43y—2y

Remark that g is maximum at y = 3/4 and then

yeigfl]g(y) > min (g(0), g(1)) = 1.

(5.4)
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Therefore (5.4) means

S
W= = = KO

Step 2: Monotonicity of K. Let us compute with y = y*:

K'() = g%(w(g(y) ~258()

with
8(y) = 2y8'(y) = 1+3y —2y* —2y(3 —4y) = 1 — 3y + 6y” =: h(y)

which is minimal at y* = 1/4 with value h(y*) > 0. Therefore K is increasing.

Step 3: Monotonicity of z. Assume now that z has a local maximum at x with value
Z = z(X). Then we have

7<—K(@) with 7=

We already know (see (4.4)) that
2(x) = = —de ™ + o(e™)

which shows that z cannot be non-increasing in (x, +o0) (and satisfies z(4o00) =
@, (400) = —A). Therefore there exists x > X such that z has a local minimum at x
with value z = z(x) that we can choose such that

2<7<0. (5.5)

Moreover we have

1

z>—K(y) with y= < 7.

The strict monotonicity of K implies
2= —K@) <—-K(@) =<z

which is in contradiction with (5.5). Therefore, we conclude that z has no local
maximum.

Step 4: Behavior at r = 0. We recall that ® € C*([0, +0)). From the fact that At +
d(r) is a solution of (1.3), we deduce that

2+ r*@? rd
=1+ 20 + @ ' r_
: T ’(1+r2<1>§>+1+r2c1>3
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At r =0, we deduce that
1+2®,(0)=0. (5.6)
Close to r = 0, we deduce (by Tayor expansion) that
1
® (r)=0(r) + ) — - (14 2®,(r) + O(r7)).
Using (5.6), we deduce that
®,.(0) 4 0
==->0.
rr 3
Step 5: Conclusion. Using the fact that ®,.(0) > 0 and the fact that ®, has no local
maximum (by Step 3), we deduce that ®, is increasing, which in particular implies
(5.1) and (5.2). This ends the proof of the proposition. a

Proposition 5.2 (Sign and monotonicity of the curvature). Let ® be the profile given
in Proposition 4.1. Then the curvature iq, defined in (1.2) satisfies,

—1<K4 <0
and
kp(0) = =1, K4(+00) = 0.
Moreover we have
(k¢), = 0.

Proof of Proposition 5.2. We set k(x) := kq(e*). Notice that we deduce from (1.2)
and (5.3) that

Ke(r=0) =2d,(0) = —1.

Step 1: k € [—1,0]. Recall that for the profile, we have,

h=e " 1+ ud+e > u, + o M e (1 +x)/1+u? (5.7
1+ u?

where the curvature x can be written as

u u

K:i=e " =+t = (5.8)

V1+u (1+u2)>

Equation (5.7) shows that we can find the following other expression for the
curvature,

re*

—1. (5.9)
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Using (4.4), we then deduce that
K(x = 4o00) =0. (5.10)
Moreover, using again (5.9), we have

X

le* Ae’

Ky - 3 UxUyx
VI+u: (1+u?)?

re* ] 2x —x Uy
=—— AU k- ——
V1+u? V1+u?
= e /1 +u2 — Je*u,x.

Using the fact that u, < 0, we conclude that

K(xg) >0 = k(x) > k(x,) for x> x,
which is in contradiction with (5.10). Therefore k¥ < 0. The fact that 1 + x > 0 comes
directly from (5.9).

Step 2: i is non-decreasing. Let us start again from

K, = e\ /1 +u? — Je*u, k. (5.11)

Then

uu ) 2
Ko = A€\ J1+u2 —20e*u x + iex#xz —Je*u, Kk — de*u K,
I+ ul

u Ae*
=2k, — e 1+ — P uk, + =k, — ——
u V1+u?

X

1 x /1 2
=Kx(2—l€2xux+h>_/he——i—ux<ux+ Ux )

1+ u?

X

X ux

N\ e /T+u?
— ok, (Z au+ _> ALy e
u u,

X

Recall that u, <0, k <0 and x, = 0 implies in (5.11) that u,x = e™*\/1 + u2 > 0,
which shows that x < 0. Therefore we conclude from the above computation that

K, <0 at any point where x, = 0.

This implies that x cannot have local minima. Because —1 < x(x) < 0 and k(—o0) =
—1, k(4o00) = 0, we deduce that k does not have local maxima neither (which would
imply the existence of a local minimum). Therefore

K, > 0.

X

This ends the proof of the proposition. |
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5.2. Bound firom below for the Angular Velocity

We next prove the following lemma.
Lemma 5.3 (Bound from below on 1). We have A > 1/4.

Proof of Lemma 5.3. The proof proceeds in several steps.

Step 1: Comparison. The idea is to revisit the proof of the uniqueness of 1. For some
u > 0, we set

¢ :=¢ and @, := —pue'.

If

p> A,
then a comparison of the behavior at x = +oo implies that

¢ =@ +K on R
for some suitable constant K. We recall that
h=Fx @0 ¢u),
with F defined in (3.2). We then define
h,l(x) = F(x, (02) 5 (#2) )
= Ve X4+ 2 —pet <1 + ﬁ) .
If
o< irelﬂf{ h,(x), (5.12)
then we can take 1, = a and we see with 4, := 4 that
Iot + @y(x) < 4t + @i (x) + K

is true at + = 0 and then is true for every time ¢ > 0, because the left hand side is a
subsolution and the right hand side is a solution. Then we conclude that

v=2<=2

ie.

u>4i = A>o if o satisfies (5.12). (5.13)
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Step 2: Estimate on o and conclusion. Remark that (5.12) is satisfied for « > 0 if and
only if

—x 1 ? —2x 2
<rx—|—ue (l-}-m)) <e " H+u (5.14)

Because we have

—Xx 1 ? 2 —2x,,212
(OC+M€ <l+m>> <20+ 2e u2

we see that inequality (5.14) is satisfied in particular if
20> < p® and 8u’ < 1.
For instance for
p=1/2v2) and «=1/4,
we conclude from (5.13) that 4 > 1/4. This ends the proof of the lemma. |
Proof of Theorem 1.4. Apart from (1.7), Theorem 1.4 is then a consequence of

Propositions 3.1, 4.1, 5.1, 5.2 and Lemma 5.3. As far as (1.7) is concerned, it is a
simple consequence of

A
0<14Kg= —r .
V14 rd?
The proof of Theorem 1.4 is now complete. |

6. A Liouville Result

This section is devoted to the proof of a Liouville result (Theorem 1.8) for global
solutions of (1.3). This Liouville result will be used in the next section. The Liouville
Theorem 1.8 classifies global space-time solutions. Such kind of results have been
for instance obtained for certain nonlinear heat equations in [11, 21], where the
nonlinearity comes from the source term. On the contrary, the nonlinearity in our
problem comes from the geometry itself.

In order to prove Theorem 1.8, we first prove two comparison principles: one
for small r’s (i.e. in R x [0, r;)), and one for large r’s (i.e. in R x [r], +00)).

Proposition 6.1 (Comparison principle for small 7’s). Given some constant C > 0,
there exists some r; = ry (C) > 0 such that the following holds for every ry € (0, ry].
Let U € C*'(R x [0, r,]) be a subsolution and V € C*!'(R x [0, r,]) be a supersolution
of (1.3) in R x (0, ry) satisfying

14+2V,(1,0) <0<142U.(1,0) forall telR. (6.1)
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Assume moreover that we have

U IV,| = C,
"U,.| < C, (6.2)
|U-V]|<C.

IfU<VinR x{r}, then U<V in R x [0, ry].

Remark 6.2 (The Neumann boundary condition). Notice that condition (6.1) can
be seen as the evaluation on the boundary » = 0 of the inequalities in equation (1.3)
associated to subsolutions U and supersolutions V.
Proof of Proposition 6.1. The proof proceeds in several steps.
Step 1: subsolution W = U — V. We set W = U — V. We write the difference of the
two inequalities satisfied by U and V, which gives
W, = G(rU,) — G(rV,) + U.(K(rU,) — K(rV,))

+(U, = V)K(V,) + U, (H(rU,) — H(rV,)) + rH(rV, )W,

with
G =TT Kp) =20 hp) = (63)
p) = P, P=11 7 P=17 7 )
This leads to
W, < AW, + H@#V,)W, on R x (0, r) (6.4)
with
K(rV.
Amas KOV (6.5)
r
where

a= fol ds G'(r(U, — sW,)),
b=U, [, ds K'((U, — sW,)), (6.6)
c=rU, fol ds H'(r(U, — sW)).

Using (6.2) and the fact that |G’(p)| < |p| and |K'(p)| = |H'(p)| < 2|p|, this implies
that

2
A> —rC+ = —2r,C* = 2r,C°.
o

Choosing then ry = r,(C) > 0 small enough, we deduce that

A>0 and H(rV,) = (6.7)

| =
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Step 2: Supersolution V. The goal is now to construct a non-negative supersolution

(i.e. satisfying the reverse inequality in (6.4)) which explodes as || — +o00. We define
for some u > 0

W(r, 1) = e{(r) + (1)
with
f(H=0 ift<0
0<feC”(R) s.t. f =0

f(t) > 400 ast — +oo

such that we have

{ _luC > %Crr in (0’ rO)?
(0)=0.

2
We can simply choose {(r) :=cos (%< ) with 2u:= () . Because {, <0,{,, <0
4,0 r r

4

on (0, ry), we get, using (6.7), that

rr =

1
v, > E‘I’ > AWV, 4+ H(ru,)V,, on IR x (0, rp).

Step 3: Contact point. Notice that ¥ > 6 > 0 on R x [0, ry]. Then for £ > 0 large
enough, we have:

eV >W on R x|[0,nr].
We can then decrease & until we get a contact point,
e =infle >0, e?>W on R x][0,r]}.
We now want to show that &* = 0. By contradiction, assume that &* > 0. We have

inf  {e*W — W} = 0. (6.8)

(t,r)eRx[0,rp]

Because W is bounded and

liminf inf W(¢, r) = +o0

|t|—>+o00 re[0,rp]

we deduce that the infimum in (6.8) is reached at some point (¢*, r*) € R x [0, ry].
Because ¢*¥ > £*0 > 0 and W < 0 for r = r, we deduce that r* € [0, r;). Recall that

W=&Vv-Ww
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solves
Wt = AWr + H(rVV)Wrr’
W =0 on R x (0, r),
W(t*, r*) =0,

W.(1,0) <0 forall telR,

and as a consequence of our assumptions, the functions A and H(rV,) are
continuous on R x (0, ry].

Case 1: r* > 0. Then we can apply the strong maximum principle (see Theorem A.1)
and deduce that

V=W on (—oo,]x [0, 7], (6.9)

which is absurd for r = r,.

Case 2: r* = 0. If the coefficient A would have been continuous up to r = 0, then we
would have applied Hopf lemma (see Lemma A.2) to deduce again (6.9), in order
to get the same contradiction.

The difficulty here is that the coefficient A blows-up as r goes to zero. We can
easily circumvent this difficulty, if we replace W with

V=T —yr

for some 5 >0 small enough. Now at the point (¢,0) of minimum of
W =¢&*¥ — W, we get in particular that

(r,0) = —e'n — W,.(¢,0).
On the other hand, we have by assumption
Wr(t*’ O) = (Ur - Vr)(t*’ 0) . 0

which gives a contradiction. Therefore, in all cases, we conclude that &* = 0, which
means that W < 0. This ends the proof of the proposition. O

Proposition 6.3 (Comparison principle for large r’s). Given some constants . > 0,
0> 0and L, > 1, there exists r&“ = rgr (0, Ly, A) > 0 such that the following holds for
all ry € [r), +00). Let U € C*'(R X [ry, +00)) be a subsolution and V € C*'(R x
[ro, +00)) be a supersolution of (1.3) on R x (ry, +00), satisfying in R X [ry, +00),

—-Ly<U,V, <-4,

|U(t, ) — it — ®y(r)| < C,
|V(t, r) — 2t — ®y(r)| < C,
[(Po), (] = Lo

(6.10)

for some function ®; and some constant C > 0.
IfU<VonRx{r}, then U<V inR x[ry, +c0).
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Proof of Proposition 6.3. We have:

1 U
U < -G(U,) + —LK(U,) + U, c*(rU,)
r r

and
1 v, )
‘/t 2 _G(rvr) + _K(rvr) + Vrro- (rVr)
r r
with
2+ a? 1
Ga)=+v1+a, K(a)=——, oda)= .
1+ a? 1+ a2

By contradiction, assume that

M= sup {ut, r)—V(t,n} > 0.

(t,r)eR x[ry,+o0)

For o, n > 0, we set

I
20 2 2

M= s Ut - viep) -

teR, r,p>ry

which satisfies

M
M,, > 5 > 0 for o, n small enough. (6.11)

Since U(t,r) — V(t, p) < 2C + Oy(r) — Oy(p) <2C + Ly|r — p| (using the L,-
Lipschitz property of the profile ®,), we deduce that this supremum is reached at a
point that we denote by (z, r, p). It satisfies
2 2 2 2
r [r — p| <3 M alj

M
T ol Ly I PR c-2 ¥
Ny Ty = y thlr—pl="——= >t

which in turn implies (for fixed o > 0)

lim e = 0. (6.12)
n—0

We next distinguish two cases.

2
Case 1: r,p > ry,. In that case, setting U(t,r) = U(t, r) —ocr—, we get with a =

. . 2
U(t,r),b=V/(tp),A=U,(tr1),B=1V,(t p) that

p+or

1
a<-G(rp+ acrz) + K(rp + otrz) + (A + oc)oZ(rp + ocrz) (6.13)
r r
1 p
b> ;G(pp) +oK (pp) + Ba*(pp) (6.14)
a—b=mnt

()2
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where p := TP satisfies (using equation (6.10) with p = V.(1, p) = U.(1, 1))
—Ly < p,p+oar < 0.
Subtracting (6.14) to (6.13), we get that
nt<I+15L+1L (6.16)

where

1 1 + ar
Iy = —G(rp+ar’) = ,0p). L= £ —K(rp+ar’) - %K(pp)

and
I := (A + a)a*(rp + ar?) — Ba*(pp).

Estimate on /,. We have
1 w1 1 1
Iy = ;G(FP +or’) — ;G(PP) + ;G(PP) - ;G(PP)

G'(=ryd) <@ + rxr) + (”r—;r) G(pp)
)

< G'(—=ryd) (“i + ocr) + (pr_;r) (1+plpl)

r

IA

2 2
< G'(=n0) (2 n ar) el o
r rp r

where, for the second line, we have used that rp + ar?, pp < —r,6 and G’ is non-
decreasing on (—oo, —dr,) and for the third line, we have used that G(a) < 1+ |a].
Choosing r, such that G'(—r,d) < —%, and such that ry > (1—) > 1 we get that

1
I, < —Eocr+2ocL§. (6.17)

where we have used that |p| < L, and L, > 1.

Estimate on /,. Using that K is bounded by 2, we have

L

IA

];)K(rp +or?) — %K(pp) + 20

< ’—: (K(rp +ar®) — K(pp)) + 22

where we have used the fact that p <0, p > r. Using now the fact that K is non-
decreasing on (—oo, 0) and that 0 > rp + ar? > pp, we get that

L <2a. (6.18)
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Estimate on /;. Using the matrix inequality (6.15), we have that for all £,{ € R

_ "2

Using also that ¢ is bounded by 1, we get

1 2 1 , 2
L=t~ (o(p+ar?) = o(pp)” = ot — (16"l i=(oprpiary (r = pIP + 7))

Since |6'(a)| < &, we have [[6'[| < (,p.piar

— 42

1 1
Y = o S R Hence we get

1/(r—p)p+arr\ 1 [oap? ? 4oLy
I3§OC+&(T =OC+% 74‘0( <o+ 5 (6.19)

where for the last inequality, we have used that r > r, > 1 and |p| < L, with L, > 1.
Combining (6.16), (6.17), (6.18) and (6.19), we finally get
1 4oL}
nt < —Eocr + SaL(Z) + 70.
Taking the limit  — 0 and using (6.12), we get (using L, > 1)
4oL}
54

1
0< —Eocr—f— SaLj +

st
o

Case 2: r =71, or p =r, Assume for instance that r = r, (the case p = r, being
similar). Using that M, , > 0 for o and 5 small enough, we get that

which is absurd for r > r, > 10L] +

|"o_l)|2

L4 20 S Ul ) = VUt p) < VI ) = Vit p) < Lol — .

This implies in particular that |r, — p| < 2aL,. Injecting this in the previous
inequality, we obtain that

grg < 2L
which is absurd for r; > 2L,. This ends the proof of the proposition. O

Before proving Liouville Theorem 1.8, we first prove Theorem 4.7 that has been
used in Subsection 4.3.

Proof of Theorem 4.7. For all v e R, we define
w' =@ — & 4.
In view of (4.15), we can choose v > 0 big enough so that w’ > 0. We then define

v =inf{v>0: w’ >0in [0, +00), for all v=>v}.
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We want to show that v = 0. By contradiction, let us assume that v* > 0. Using
(4.15), we then have

w” >0

w” (r) > 0 for r large enough
inf w" (r) =0.

ref0,400)

From Propositions 6.1 and 6.3, we deduce that we have

inf  w' ()= inf w(H) =0
re[r&,r&r] ( ) re[0,+00) ( )

with 0 < r; < ry. Using again the Strong Maximum Principle (Theorem A.1), we
deduce that w” = 0. For r = +oo, this implies that v* = 0. This is a contradiction.
Therefore v = 0 and ®' > ®2. Exchanging ®' and ®?, we get the reverse inequality.
This shows that ®' = ®? and ends the proof. O

We now prove Theorem 1.8.

Proof of Theorem 1.8. The proof proceeds in several steps.

Step 0: Regularity and condition at »r = 0. Because U is globally Lipschitz continuous
(in space and time), we can apply Proposition 2.2 to conclude that U € C'*(R x
[0, +00)). By continuity in equation (1.3) up to r = 0, we deduce that U satisfies

1
U.(1,0) = —3 for all te R.

Finally, from Lemma 2.3, we have
|U,(t, 1) < C(1+7*) forall (t,7) € R x [0, +00).

Step 1: Preliminaries for the sliding method. We apply the sliding method (see [4]).
For any h € R, we set

U'(t,r) = Ut + h, r).

Since U satisfies (1.10), one can choose b > 0 large enough so that U" +b > U on
R x [0, +o0). We now consider

b*=inf{be R:U"+b> U}
and we set
Vi=U"+b">U.
Notice that, using in particular Step 0, we can check that the assumptions of

Propositions 6.1 and 6.3 are fulfilled with 0 < r; < ry < +oo (decreasing r, and
increasing ry if necessary).
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We claim that this implies

m:= inf (V-U)=0. (6.20)

(LeRx[ry 1]
Indeed, if m > 0, applying Propositions 6.1 and 6.3, we deduce that
V—U=>m=>0 on R x[0,4o0)
which contradicts the definition of b*. Therefore (6.20) holds true.

Step 2: Consequence. We distinguish two cases.

Case 1: The infimum in (6.20) is reached at (7, ;). We have

V>U on R x|[0,+c),
V=U at (to, r()) € R x [rO_’ VJ]

Notice that W = V — U satisfies
W, = AW, + H(V,)W,,

with A and H defined in (6.5) and (6.3). Moreover A and H(rV,) are continuous
functions because U, V € C*!(R x [0, +0)).

From the strong maximum principle (Theorem A.1) applied to W, we deduce
that

V=U
which gives for all k € Z
U(t,r) = Ut + h,r)+ b* = U(t + kh, x) + kb*.
In view of (1.10), this implies that b* = — /A, i.e.
U(t+ h,r) = U(t, r) + Ah.
Case 2: The infimum in (6.20) is reached at infinity. We now assume that there exists

sequences (1,), and r, € [ry, ;] such that |t,| = +oo, r, = 1, € [ry, rf] and (V —
U)(t,, r,) = m. We define the functions

U(t,r):=Ut+t,,r) — At V,(t,r) =V(t+1t,,r) — A,

n°

which have the same Lipschitz constant (in space and time) as the one of U. We can
then apply Ascoli-Arzela Theorem, to deduce that, up to a subsequence, we have

u—-U,, V,—>V, and V_(t,r)=U,(t+h, 1)+ b

where U, V. are two globally Lipschitz solutions of (1.3) on IR x (0, +o0)
satisfying again

V,.>U, on R x][0,+400),
Vo,=U, at (0,r,) e R x[ry,ry]
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We can then repeat Step 0 and then case 1 for (U, V) replaced by (U,, V, ) and get
that b* = —Ah, and then V > U means

Ui+ h,r) > U(t, r) + Ah. (6.21)

Step 3: Conclusion. Notice that (6.21) means that 7+ U(z,r) — At is both
nondecreasing (using 4 > 0) and nonincreasing (using z < 0). This implies that

U(t, ry — 1t = U(0, r).
From (1.11), we have in particular
U0,r=<0

and by our assumptions U(0, r) is globally Lipschitz in the variable r. Then Theorem
1.4 1) implies that there exists a constant a € R such that

U@, r) = &(r) + a.
This ends the proof of the theorem. a

7. Long Time Convergence

In order to prove Theorem 1.6 we need the following proposition, whose proof is
postponed.

Proposition 7.1 (Gradient estimate from above). Let T > 0 and let U be a solution
of (1.3)-(1.4) in (0, 7) x (0, 400), such that U is globally Lipschit; continuous with
respect to time. Assume that there exists a constant C such that for all (t,r) € (0, T) x
(0, +00),

|U(t, r) — 2t — D(r)| < C. (7.1)
If the initial datum U, satisfies

(Uy), =P, in (0, 4o00) (7.2)
then we have

U <®, in (0,7) x (0, +00).

Proof of Theorem 1.6. By Theorem 2.1, there exists a unique solution U to (1.3),
(1.4) which is globally Lipschitz continuous (in space and time). Notice that Ar +
d(r) is a global solution. Therefore, using (1.8) and applying the comparison

principle (see [9, Theorem 1.3]), we deduce the following estimate for all times,

\U(t, ) — it — ®(r)| < C (7.3)
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Finally using (1.9) and applying Proposition 7.1, we deduce that
U <d <0<0. (7.4)

Then for any sequence 7, — +oo, by Ascoli-Arzela theorem, we get the
convergence (for a subsequence still denoted by (¢,),),

Ut +t,,r)— U,,0) - U,(t,r) locally uniformly on compact sets
where U, is still globally Lipschitz continuous and still satisfies (7.3) and (7.4).
Therefore the Liouville result (Theorem 1.8) implies that there exists a number a €
R such that
U(t,r) =it + ®(r) + a.
This ends the proof of the theorem. |
Proof of Proposition 7.1. We have to prove that for r > p > 0
U(t,r) = U(t, p) < @(r) — D(p).

Using log coordinates and setting u(t, x) = U(t, ¢*) and ¢(x) = P(e*), this is
equivalent to prove that for x > y > —o0

u(t, x) —u(t, y) < ¢(x) — ¢(v).

Recall that u and At + ¢(x) are both solutions of the following equation

/ u,
U = F('x’ Uy, uxx) =e /1 + M% + E_ZXL{X + e_zx 1 —EXMZ .

By contradiction, assume that

M= sup A{u(t,x) —u(t,y) = ¢(x) + ¢(y)} > 0.

x>y, t€[0,7)

For &, o, n > 0, we consider the following approximate supremum,

" 1= o, n }

2¢e 2 T—1t
(7.5)

A— {u(r,x)—u<s,y>—¢<x>+¢(y>—

x>y, t,5€[0,T)

Remark that when the penalization parameters o and # are small enough, we have

M,,,>M/2>0.
From (7.1), we deduce that u(t, x) — u(s, y) — ¢(x) + ¢(y) is bounded by 2C + AT,
and then the supremum in (7.5) is reached at a point that we denote by (¢, x, s, y)
which satisfies

lt—s> o, n

— — < 2C+ AT.
e +2x +T—t_ + A
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We deduce in particular that

lim ax = 0. (7.6)

a—0

The proof is divided into two cases.

Case 1: There exists ¢, — 0 such that 1 = 0 or s = 0. Assume for example that r = 0
(if s = 0, a similar reasoning provides the same contradiction). Then we have

2
n S
< u(0,2) — u(s, ) = 609+ 60) — o
52 52 Sst
fu(O,y)—u(s,y)—ZfLs—EfT

where in the second line we have used (7.2) and then used L, which denotes the
Lipschitz constant in time of U. This is absurd for & small enough.

Case 2: For all ¢ small enough we have ¢, s > 0. In that case, using that the function

n

|t — s> «
T—-7¢

(. ) > (@, ) —us, y) — ¢(x) + () — — () =

reaches a maximum at (¢, x), we deduce that

t;s + (T i )2 < F(x, ¢, (x) + ax, d.(x) + ).

Similarly, we have that

"Ts > F(y, 0,(3)s dx(0))-

Subtracting these two inequalities, we get

T = FOr (0 + o5 () +90) = FO 6.0). 6. 0))
< P (0) + 22 b () + 2) = F(x b (3). 10 (2)
F b(). B () = FO 9,00, b))

< F(x, ¢ (%) +ox, ¢ () + ) = F(x, §,(x), ¢, (x)) + 4 — 4

which gives

% <eolx|+ e Fox+ e Fa+ 1 (7.7)

with

—2x 1 - 1
I:=e¢ ¢x,r(x) (1 + (¢x('x) + OC.X)2 1+ (¢x(x))2> .
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We write

L= e ¢, (x) J, Ji=H(d,(x) +ox) — H(¢,(x), H(p):=

1+ p*

Estimate on J. We observe that the function H is concave in [—%, %@] and convex

outside. Recalling (1.6), we also see that
e (x) = D.(e") € [-1, —1]. (7.8)
We now define some b > 0 such that

—2 <. () <0 forall x=<-b<0,
¢, (x) < —% forall x>b>0,

We call L, the Lipschitz constant of H. Using (7.6), we can assume ox small enough.

For instance, for |ox| < 2—\15, we deduce from the convexity/concavity property of H
that
C ) /
WP 2 CH (9:(0) +ax) = J 2 axH ($.(0)) 2 0 forall x=b>0,
axly = J = ol (¢,(x)) <0 forall x <—-b <0,
(7.9)

where now C > 0 is generic constant that can change from line to line.

Estimate on /. Notice that 1t + ®(r) is a globally Lipschitz continuous solution of
(1.3), and then Lemma 2.3 implies the bound (2.2), namely

|®,,(N] < C(1+77).
Because ®,,(e*) = e ¢ . — e *¢_, we deduce that
I <e ¢ J+C(1+e™)|J|.
We deduce, using (7.8) and (7.9), that

I Ce " ox forall x>b>0,
— | Ce*a|x| + Ca|x| forall x <—-b <0,

which can be rewritten as
I < Ce *a|x| forall |x|]=>5b=>0.

Using (7.7), this leads to

% < Ce*ulx|+ e

—2x

oax forall |x|>b>0 (7.10)

We now distinguish several cases.
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Assume first that there exists o« — 0 such that x < —b. Increasing b > 0 if
necessary, we can assume that Ce ™ a|x| + e >*ax < 0 for all x < —b, which gives a
contradiction.

Second, assume that there exists « — 0 such that x > b. For x > b > 0, sending
o — 0 1in (7.10), we get a contradiction.

Finally, assume that for all « small enough, we have —b < x < b. In that case,
we have from (7.7)

% < e Yalx|+ e Fox + e Fa+ e |, (X)|Lx|x]|.

Again, sending o — 0, we get a contradiction. This ends the proof of the
proposition. a

A. Appendix
A.l. Strong Maximum Principle and Hopf Lemma

In this subsection, we recall the classical strong maximum principle and Hopf lemma.
For —oo <t; <t, <400 and 0 < R < +o0, let us consider the following general linear
parabolic equation

w, = a(t, Hw,, + b(t, Nw, + c(t,Hw on Q:=(t,15) x (0, R) (A.1)
with the following assumptions on the coefficients

{ a,b,ceC(Q), (A.2)

a>0>0 on Q

For A=Q or Q, we recall that we say that a function we C>'(A) if and only if
w, w,, W,,, w, € C(A). Then we have the following classical result.

Theorem A.1 (Strong maximum principle [25]). Consider a function w € C>'(Q) which is a
supersolution of (A.1). If

w>0 on Q,
w=0 at (tp,r)€Q

then w=0 on QN {t < ty}.
We also have (see [20, Lemma 2.8]).

Lemma A.2 (Hopf lemma). Consider a function w € C>'(Q) which is a supersolution of
(A If

w>0 on a,
w=0 at (t,0)€dQ with t,€ (t;,1,)

then either w=0 on QN {t <t} or w,(t,,0) > 0.

A.2. Interior Schauder Estimate

The following result can be found in Krylov [18] (see also [19, 20]).
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Proposition A.3 (Interior Schauder estimates). Let T>0, 6 >0, R >0 and o € (0,1) and
N > 1. Assume that w solves (in the sense of distributions)

w,=alw+b on (T—96,T+ ) X By

with By the ball of radius R in RY. Assume that a, b € CZ" (T — 8, T + 0) x By) with for some
n>0:

O<n=<a=<l/n on (T—0,T+9)x By
and

<C

lal c,%“((ﬁ&,ﬂé)xsk)

Then there exists a constant C = (0, R, a, N, , Cy) > 0 such that

[[w] el

+ |w|L°°((T—6,T+5)><BR)} .

[ <C 2,
CA(IT,T+0)xBry) 2 (T—6,T+5)xBg)

A.3. A Technical Lemma

Lemma A.4 (A Holder estimate). Let o € (0,1) and N > 1. For X € RY, let us define the
function

XIS i X £0
X ,
X]

0 if X=0.

{(x) =

Then there exists a constant C = C(o) > 0 such that for all X', X € RY, we have
LX) = (X)) = CIX" — X"
Proof of Lemma A.4. Let us assume that |[X’'| > |X| > 0. We write
(X)={X) =T+ T,

with

X/ X’ X
T, = (X'|" = |X|*) — and T2:|X|“< / _7>'
|X'| X |X]

Step 1: Estimate on 7;. We have

X (A.3)

X' = |X|*] = |X|*|r* = 1] with r=-">1
|XI|

Case A: 1 <r <2. We write r =1+ 06 with 0 < 6 < 1. Then we have

Ir — 1] = 23 + 0(8?)
< C8* = Clr— 1],

Case B: r > 2. Then we have
|[r* —1] < Clr — 1% (A4)

Putting together cases A and B, we see that (A.4) holds true for any r > 1. Using (A.3), we
get for some C > 1:

1T\ = [1X']" = [X]"| < CIX'| — [X]|" = CIX" — X]". (A.5)
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!

Step 2: Estimate on 7,. Writing e = with |Y| > 1, and using the fact that the

s

X" 7 x|
Z
map Z +— ﬁ is 1-Lipschitz (for the euclidean norm) on IR¥\B(0, 1), we get that
X’ X Y X —-X
: ——7=’—~—i <y—e= X=X (A.6)
1X'T XYL el 1X]
Case A: |X| < |X'| < 2|X]. Using (A.6), we deduce that
X —X X/_Xl—a X —X I—o
ol = e = B e o (H2E) e
|X] | x| |X']
which implies
|T,| < 47X — X|* (A7)

Case B: | X'| > 2|X|. We have
IT| < X" < |IX'] = |X]]* < | X" — X"
Putting together cases A and B, we see that (A.7) holds true for any |X'| > |X]| > 0.

Step 3: Conclusion. From Steps 1 and 2, we deduce that there exists a constant C > 0 such
that

LX) = {X)] = CIX" = X|”

This last estimate is also true if X = 0. By symmetry between X' and X, we see that it is
finally true for any X, X’ € R¥. This ends the proof of the lemma. O

A.4. Equation Satisfied by the Curvature
The following result is not used in the rest of the paper. We give it as an interesting result

of independent interest.

Lemma A.5 (Equation satisfied by the curvature). Let @ be the profile given by Theorem 1.4.
The curvature k(x) = Kq(e*) solves the following equation

e_ZXKxx 2 —2x 2”)25 exux
Kr:l—l—ui +r°(14+x) +e 7k, —1+]+u§+\/ﬁ . (A.8)

Proof of Lemma A.4. We start from

u,=e 1+ u2(1 +x)

with

— u)[ MXX
K=¢e " + ok
<v1+u§ (1+u@2>
Let us define
1

M(a) = m.

— % with M'(a)=
V14 a?
Then we can write

K= e (e M(uy),
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and
KI = e*2x (exM/(ux)uxt)x‘

We now compute
—X

Uy, = e 1+ M%(Kx — (1 + K)) + c > (1 + K)quxx

JV1+u

=e 1 +u2(, — (1+x) +e /1 +u2(1 +x)u, Lov +u, —u,
’ 1+ u?

=e "1+ w2k, —e 1+ 12(1 +©) (1 + ) + (1 + u®)(1 + ©)xu,

=(1+x) {(1 +utyku, — e (1 + ui)%} +e /1 +ilk,.
This gives

A e"'u X
e K’:O"<(1+K){Km_l}+l+u§>

=5, ((1 + 1) (ke M(u,) — 1) + li—uz>

_ . 2
=K, {Ke*M(uX) -1+ A+ ke Mu,) — Uylln } + 7 . >+ 1+ K)Ke* .

(14 u2)? +u
Therefore
eizxKxx 2
K, = T + (14 x)x
+e 2k {14+ (14 2K)e*M(u,) — 2e-M(u,)(x — e *M(u,)))
e MKy 2, 2
=T u'z' + (141K + e i {—1+ e M(u,) +2(M(u,))*}
which shows the result. This ends the proof of the lemma. d
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